
DATA STRUCTURES WITH C
(Common to CSE & ISE)

Subject Code: 10CS35 I.A. Marks : 25

 Hours/Week : 04 Exam Hours: 03
 Total Hours : 52 Exam Marks: 100

PART – A

UNIT - 1 8 Hours
BASIC CONCEPTS: Pointers and Dynamic Memory Allocation, Algorithm Specification, Data Abstraction,
Performance Analysis, Performance Measurement

UNIT - 2 6 Hours
ARRAYS and STRUCTURES: Arrays, Dynamically Allocated Arrays, Structures and Unions, Polynomials,
Sparse Matrices, Representation of Multidimensional Arrays

UNIT - 3 6 Hours
STACKS AND QUEUES: Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues Using Dynamic
Arrays, Evaluation of Expressions, Multiple Stacks and Queues.

UNIT - 4 6 Hours
LINKED LISTS: Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues,
Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists

PART - B

UNIT - 5 6 Hours
TREES – 1: Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees, Heaps.

UNIT - 6 6 Hours
TREES – 2, GRAPHS: Binary Search Trees, Selection Trees, Forests, Representation of Disjoint Sets, Counting
Binary Trees, The Graph Abstract Data Type.

UNIT - 7 6 Hours
PRIORITY QUEUES Single- and Double-Ended Priority Queues, Leftist Trees, Binomial Heaps, Fibonacci
Heaps, Pairing Heaps.

UNIT - 8 8 Hours
EFFICIENT BINARY SEARCH TREES: Optimal Binary Search Trees, AVL Trees, Red-Black Trees, Splay
Trees.

Text Book:

1. Horowitz, Sahni, Anderson-Freed: Fundamentals of Data Structures in C, 2nd Edition, University Press,
2007.
(Chapters 1, 2.1 to 2.6, 3, 4, 5.1 to 5.3, 5.5 to 5.11, 6.1, 9.1 to 9.5, 10)

TABLE OF CONTENTS

UNIT 1: BASIC CONCETPS 1-12

UNIT 2: ARRAYS & STRUCTURES 13-26

UNIT 3: STACKS & QUEUES 27-36

UNIT 5: TREES 37-50

UNIT 6: TREES(CONT.) & GRAPHS 51-62

DATA STRUCTURES WITH C

Each one of us views the world through the lens of our personal context, which has been shaped by the unique

experiences of our lives.

 1

UNIT 1: BASIC CONCETPS

VARIOUS PHASES OF SYSTEM LIFE CYCLE

1) Requirements

• These describe
→ information given to the programmers (i.e. input) &

→ results the programmer must produce (i.e. output)

2) Analysis

• There are 2 methods to analysis:

 i) Bottom-up methods are unstructured strategies that place an early emphasis on coding fine points.

 ii) Top-up methods
 → begin with the purpose that the program will serve &

 → use this end-product to divide the program into manageable-segments

3) Design

• Designer approaches the system from perspectives of both
→ data objects that the program needs &

→ operations performed on them

• First perspective leads to creation of ADTs(Abstract Data Types)

 while second requires specification of algorithms.

4) Refinement & Coding

• We choose representations for the data-objects &

 then write algorithms for each operation on them.

5) Verification

• This phase consists of
→ developing correctness proofs for the program

→ testing program with a variety of input-data &

→ removing errors

• Testing requires
→ working-code & → sets of test-data

 • Test-data should be developed carefully so that it includes all possible scenarios.

POINTERS

• This is a memory-location which holds the address of another memory-location.

• The 2 most important operators used w.r.t pointer are:
→ & (address operator)

→ * (dereferencing/indirection operator)
#include<stdio.h•
void main()
{

int a=10,b=20; //Declare a data variable
int *p,*q; //Declare a pointer variable
int p=&a, q=&b; //Initialize a pointer variable
int x=*p + *q;
printf("%d+%d=%d",*p,*q, x); //Access data using pointer variable

}

Program 1.1: Add 2 numbers using pointers

NULL POINTER

• The null pointer points to no object or function.

 i.e. it does not point to any part of the memory.
if(p==NULL)
 printf("p does not point to any memory");
else
 printf("access the value of p");

DATA STRUCTURES WITH C

There is a giant asleep within everyone. When that giant awakens, miracles happen.

 2

DYNAMIC MEMORY ALLOCATION

• This is process of allocating memory-space during execution-time (or run-time).

• This is used if there is an unpredictable storage requirement.

• Memory-allocation is done on a heap.

• Memory management functions include:
→ malloc (memory allocate)

→ calloc (contiguous memory allocate)

→ realloc (resize memory)

→ free (deallocate memory)

• malloc function is used to allocate required amount of memory-space during run-time.

• If memory allocation succeeds, then address of first byte of allocated space is returned.

 If memory allocation fails, then NULL is returned.

• free() function is used to deallocate(or free) an area of memory previously allocated by malloc() or

calloc().
#include<stdio.h>
void main()
{

int i,*pi;
pi=(int*)malloc(sizeof(int));
*pi=1024;
printf("an integer =%d",pi);
free(pi);

}

Program 1.2: Allocation and deallocation of memory

• If we frequently allocate the memory space, then it is better to define a macro as shown below:
#define MALLOC(p,s) \
if(!((p)==malloc(s))) \
{ \

 printf("insufficient memory"); \
 exit(0); \
}

• Now memory can be initialized using following:

MALLOC(pi,sizeof(int));

MALLOC(pf,sizeof(float))

DANGLING REFERENCE

• Whenever all pointers to a dynamically allocated area of storage are lost, the storage is lost to the

program. This is called a dangling reference.

POINTERS CAN BE DANGEROUS

1) Set all pointers to NULL when they are not actually pointing to an object. This makes sure that you

will not attempt to access an area of memory that is either
→ out of range of your program or

→ that does not contain a pointer reference to a legitimate object

2) Use explicit type casts when converting between pointer types.
pi=malloc(sizeof(int)); //assign to pi a pointer to int
pf=(float*)pi; //casts an ‘int’ pointer to a ‘float’ pointer

3) Pointers have same size as data type 'int'. Since int is the default type specifier, some programmers

omit return type when defining a function. The return type defaults to ‘int’ which can later be

interpreted as a pointer. Therefore, programmer has to define explicit return types for functions.

void swap(int *p,int *q) //both parameters are pointers to ints
{

int temp=*p; //declares temp as an int and assigns to it the contents of what p points to
*p=*q; //stores what q points to into the location where p points
*q=temp; //places the contents temp in location pointed to by q

}

Program 1.3: Swap function

DATA STRUCTURES WITH C

Happiness isn't a place you get to, it's an inner state you create. Anyone can be happy, it's available to everyone &

is available right now.

 3

ALGORITHM SPECIFICATION

• An algorithm is a finite set of instructions that accomplishes a particular task.

• Algorithm must satisfy following criteria:

1) Input: There are zero or more quantities that are externally supplied.

2) Output: At least one quantity is produced.

3) Definiteness: Each instruction is clear & unambiguous.

4) Finiteness: If we trace out instructions of an algorithm, then for all cases, algorithm

terminates after a finite number of steps.

5) Effectiveness: Every instruction must be basic enough and feasible.

• Algorithm can be described in following ways:

1) We can use natural language consisting of some mathematical equations.

2) We can use graphic representations such as flowcharts.

3) We can use combination of C and English language constructs.

• Algorithm 1.1: Selection sort algorithm.
for(i=0;i<n;i++)
{

Examine list[i] to list[n-1] and suppose that the smallest integer is at list[min];
Interchange list[i] and list[min];

}

• Algorithm 1.2: finding the smallest integer.
assume that minimum is list[i]
compare current minimum with list[i+1] to list[n-1] and find smaller number and make it the new
minimum

• Algorithm 1.3: Binary search.
assumption :sorted n(≥1) distinct integers stored in the array list
return i if list[i] = searchnum;

 -1 if no such index exists
denote left and right as left and right ends of the list to be searched (left=0 & right=n-1)
let middle=(left+right)/2 middle position in the list
compare list[middle] with searchnum and adjust left or right
compare list[middle] with searchnum
 1) searchnum < list[middle]
 set right to middle-1
 2) searchnum = list[middle]
 return middle
 3) searchnum > list[middle]
 set left to middle+1
if searchnum has not been found and there are more integers to check recalculate middle and
continue search

• Algorithm 1.4: Permutations.
given a set of n(≥1) elements
print out all possible permutations
of this set

e.g. if set {a,b,c} is given,
 then set of permutations is {(a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a)}

int binsearch(int list[], int searchnum, int left, int right)
{ // search list[0]<= list[1]<=...<=list[n-1] for searchnum

 int middle;
 while (left<= right)
 {
 middle= (left+ right)/2;
 switch(compare(list[middle], searchnum))

{
 case -1: left= middle+ 1;
 break;
 case 0: return middle;
 case 1: right= middle- 1;
 }

}
 return -1;
}

int compare(int x, int y)
{
 if (x< y) return -1;
 else if (x== y) return 0;
 else return 1;
}

 Program 1.4: Iterative Implementation of Binary Search

DATA STRUCTURES WITH C

Happiness comes from devoting your life to helping others.

 4

RECURSIVE ALGORITHMS

• A function calls itself either directly or indirectly during execution.

• Recursive-algorithms when compared to iterative-algorithms are normally compact and easy to

understand.

• Various types of recursion:

1) Direct recursion: where a recursive-function invokes itself.

 For Ex,
int fact(int n) //to find factorial of a number
{

if(n==0)
 return 1;
return n*fact(n-1);

}

 2) Indirect recursion: A function which contains a call to another function which in turn calls

 another function and so on and eventually calls the first function.

 For Ex,
void f1() void f2() void f3()
{ { {

 f2(); f3(); f1();
} } }

int binsearch(int list[], int searchnum, int left, int right)
{ // search list[0]<= list[1]<=...<=list[n-1] for searchnum
 int middle;
 if (left<= right)
 {
 middle= (left+ right)/2;
 switch(compare(list[middle], searchnum))
 {
 case -1:return binsearch(list, searchnum, middle+1, right);
 case 0: return middle;
 case 1: return binsearch(list, searchnum, left, middle- 1);
 }

 }
 return -1;
}

int compare(int x, int y)

{
 if (x< y) return -1;
 else if (x== y) return 0;
 else return 1;
}

Program 1.5: Recursive Implementation of Binary Search

void perm(char *list,int i,int n)
{

int j,temp;
if(i==n)
{

for(j=0;j<=n;j++)
printf(“%c”, list[j]);
printf(“ “);

}
else
{

for(j=i;j<=n;j++)
{

 SWAP(list[i],list[j],temp);
 perm(list,i+1,n);
 SWAP(list[i],list[j],temp);

}
}

}

void Hanoi(int n, char x, char y, char z)
{

if (n > 1)
 {
 Hanoi(n-1,x,z,y);
 printf("Move disk %d from %c to %c.\n",n,x,z);
 Hanoi(n-1,y,x,z);
}
else
{
 printf("Move disk %d from %c to %c.\n",n,x,z);
}

 }

 Program 1.6: Recursive permutations generator Program 1.7: Recursive Implementation of tower of Hanoi

DATA STRUCTURES WITH C

The level of thinking that got you to where you now are, will not get you to where you dream of being.

 5

DATA ABSTRACTION

• The process of separating logical properties of data from implementation details of data is called data

abstraction.

Data Type

• A data type is a collection of objects and a set of operations that act on those objects.

• For e.g., data type 'int' consists of
→ objects {0,+1,-1,+2,-2. . . . }

→ operations such as arithmetic operators + - * /

ADT (ABSTRACT DATA TYPE)

• This is a data type that is organized in such a way that
 → specification of objects is separated from representation of objects

 → specification of operations on objects is separated from implementation of operations

• For example,

Specification: The specification of operations on objects consists of names of functions, type of

arguments and return type. But, no information is given about how to implement in a

programming language. So, specifications are implementation independent.

Implementation: The implementation of operations consists of a detailed algorithm using which

we can code (i.e. functions) using any programming language(C or C++).

• ADTs can be implemented in C++ using a concept called class.

• ADT definition contains 2 main sections:
 → Objects & → Functions

• Functions of a data type can be classified into

1) Constructor: These functions create a new instance of the designated type.

 For ex,

 NaturalNumber Zero() ::= 0

2) Transformers: These functions create an instance of the designated type, generally by using

one or more other instances.

 For ex,

 NaturalNumber Successor(x) ::= if(x==INT_MAX)

 return INT_MAX

 else

 return x+1

3) Reporters: These functions provide information about an instance of the type, but they do

not change the instance.

 For ex,

 Boolean IsZero(x) ::= if(x is zero)

 return TRUE

 else

 return FALSE

DATA STRUCTURES WITH C

For your life to be great, your faith must be bigger than your fears.

 6

PERFORMANCE ANALYSIS

• The process of estimating time & space consumed by program is called performance analysis.

• Efficiency of a program depends on 2 factors:

1) Space efficiency (primary & secondary memory) &

2) Time efficiency (execution time of program)

SPACE COMPLEXITY

• Space complexity of a program is the amount of memory required to run the program completely.

• Total space requirement of any program is given by

S(P)= fixed space requirement + variable space requirement

S(P)= c + Sp(I)

 1) Fixed Space Requirements

 • This component refers to space requirements that do not depend on the number

 and size of the program's inputs and outputs.

 • Fixed requirements include
→ program space (space for storing machine language program)

→ data space (space for constants, variables, structures)

 2) Variable Space Requirements

 • This component consists of space needed by structured variables whose size depends on

 particular instance of problem being solved. This also includes additional space required

 when a function uses recursion.

float abc(float a, float b, float c)
{
 return a + b + b * c + (a + b - c) / (a + b) + 4.00; // Sabc(I) = 0
}

Program 1.8: Simple arithmetic function

int sum(int list[],int n)
{

int temp=0;
int i;
for(i=0;i<n;i++)
temp=temp+list[i];
return temp;

}

Program 1.9: Iterative function for summing a list of numbers

• In above program, there is no variable space requirement. This has only fixed space requirement ie

Ssum(I) = 0 . However, if same program is expressed recursively, then it is as shown below.

float rsum(int list[], int n)
{

if(n) return rsum(list,n-1)+list[n-1];
return 0;

}

Program 1.10: Recursive function for summing a list of numbers

 • Space needed for one recursive call for above program is given below
Type Name Number of bytes

parameter:float list[] 2

parameter:integer n 2

return address: 2

TOTAL per recursive call 6

 Ssum(I)= Ssum(n)=6n

DATA STRUCTURES WITH C

A miracle is nothing more than a shift of mind that helps you see things in a new way.

 7

TIME COMPLEXITY

• Time complexity of an algorithm is amount of computer-time required to run the program till the

completion.

• Time complexity depends on
 → number of inputs → number of outputs → magnitudes of inputs & outputs

• Time complexity = compile time + run time.

• Compile time is similar to fixed space component.

• Time complexity of a program can be measured by counting number of operations that a program

can perform.

• A program step is a syntactically or semantically meaningful program-segment whose execution-time

is independent of instance characteristics.

• Time taken by one program-step may be same or different from another program-step.

 Ex1: sum=0; //this statement is a program step which takes less time

 Ex2: si=p*t*r/100; //this statement is also a program step. But, it takes more time when compared to Ex1.

• Number of program steps(or step-count) can be obtained using 2 methods:

1) Counting method 2) Tabular method

COUNTING METHOD

• Use a global variable ‘count’ with initial value of 0 and insert a statement that increment count by 1

for each executable statement.

• Consider a program for summing a list of numbers:

Program 1.11: Program for summing a list of numbers with count statements

• Since we are interested in only the final count, we can eliminate the computations of sum in above

program as shown below:

Program 1.12: Simplified version of program 1.11

• So, each invocation of sum executes a total of 2n+3 steps.

• The recursive function to add the elements of a given array can be written as shown below:

Program 1.13: Program 1.12 with count statements added

• So, each invocation of rsum executes a total of 2n+2 steps.

DATA STRUCTURES WITH C

The man who succeeds above his fellows is the one who early in life clearly discerns his object and towards that object

habitually directs his powers.

 8

TABULAR METHOD

• The following procedure is used to obtain step-count:

1) Determine step count for each statement. This is called step/execution(s/e).

2) Find out number of times each statement is executed. This is called frequency.

 The frequency of non-executable statement is zero.

3) Multiply s/e(obtained in 1) and frequency(obtained in 2) to get total steps for each

statement.

4) Add the totals(obtained in 3) to get step count for entire function.

Figure 1.2: Step count table

Figure 1.3: Step count table for recursive summing functions

Figure 1.4: Step count table for matrix addition

• The best case step count is the minimum number of steps that can be executed for the given

parameters.

 The worst-case step count is the maximum number of steps that can be executed for the given

 parameters.

 The average step count is the average number of steps executed on instances with the

 given parameters.

DATA STRUCTURES WITH C

When you align your outer world with your inner world, the universe throws its winds beneath your wings & sends you

more of its treasures.

 9

ASYMPTOTIC NOTATION

• The asymptotic behavior of a function is the study of how the value of a function f(n) varies for large

value of n, where n=input size.

• Various types of asymptotic notations are:

1) Big(oh) notation(worst case time complexity)

2) Omega notation (best case time complexity)

3) Theta notation (average case time complexity)

1) Big Oh Notation

• Big oh is a measure of the longest amount of time taken by algorithm to complete execution.

• This is used for finding worst case time efficiency.

• A function f(n)=O(g(n)) iff there exists positive constants c and n0 such that

f(n)<=c.g(n) for all n, n>=n0.

• Here, c.g(n) is the upper bound. The upper bound on f(n) indicates that function f(n) will not

consume more than the specified time c.g(n) i.e. running time of function f(n) may be equal to c.g(n)

but it will never be worse than the upper bound.

• For ex, 3n+2=O(n) as 3n+2<4n for all n>2.

2) Omega Notation

• Omega is a measure of the least amount of time taken by algorithm to complete execution.

• This is used for finding best case time efficiency.

• A function f(n)= Ω(g(n)) iff there exists positive constant c and n0 such that

 f(n)>=cg(n) for all n, n>=n0

• Here, c.g(n) is the lower bound. The lower bound on f(n) will consume at least the specified time

c.g(n) i.e. running time of function f(n) may be equal to c.g(n) but it will never be better than the

lower bound.

• For ex, 3n+2= (n) as 3n+2• =3n for all n>=1.

3) Theta Notation

• This is a measure of the least as well as longest amount of time taken by the algorithm to complete.

• A function f(n)= Θ(g(n)) iff there exists positive constants c1,c2 and n0 such that

 c1g(n)<=f(n)<=c2g(n) for all n, n>=n0.

• Theta notation is more precise than both the big oh and omega notations.

• This notation is used to denote both lower bound and upper bound on a function.

• For ex, 3n+2= (n) as 3n+2>=3n for all n>=2 and 3n+2<=4n for all n>=2,so c1=3,c2=4 and n0=2.

DATA STRUCTURES WITH C

The sad times improves us & lead us to the good, while the good times show us the fullness of our possibilities and

offer us the blessings to be appreciated.

 10

MAGIC SQUARE

• This is an n*n matrix of the integers from 1 to n2 such that

 the sum of each row & column and the two major diagonals is the same.

• Coxeter has given the following rule for generating a magic square when n is odd:

"Put a one in the middle box of the top row. Go up and left assigning numbers in increasing

order to empty boxes. If your move causes you to jump off the square, figure out where you

would be if you landed on a box on the opposite side of the square. Continue with this box. If a

box is occupied, go down instead of up and continue".

Figure 1.6: Magic square for n=5

Program 1.14: Magic square program

DATA STRUCTURES WITH C

To live your highest life, the trick is to have the heart & the mind working together in harmony.

 11

PRACTICAL COMPLEXITIES

• The time complexities of a program are useful in determining better algorithm among the algorithms

that perform the same task. i.e. by comparing the time complexities of two algorithms that perform

the same task, we can determine which algorithm is better.

• For ex, let time complexities of two programs P and Q be (n) and (n2) respectively. Since, order of P

is less than order of Q, the program P is faster than Q.

• Time complexity of an algorithm is normally expressed as a function of ‘n’ as shown in following

table.

Figure 1.7: Function values

Figure 1.8: Plot of function values

DATA STRUCTURES WITH C

Breakdowns always lead to breakthroughs.

 12

PERFORMANCE MEASUREMENT

• The measure of how fast an algorithm is executed on a specific machine and how efficiently the

algorithm uses space on that machine during execution is called performance measurement.

• Performance measurement wrt time can be obtained using 2 methods:

1) Using clock() function

2) Using time() function

Figure 1.10: Event timing in C

Using clock() Function

• This function
→ returns amount of processor-time that has elapsed since the program running

→ is accessed through statement: #include<time.h>

• To find the time, we use clock() function twice in the program, once at:
→ start of event

→ end of event

• The difference between stop-time and start-time gives processor-time for the activity to be

completed.

• To convert into seconds, we divide it by "ticks per second" which is identified using symbolic constant

CLOCKS_PER_SEC.

Using time() Function

• This function
→ returns time measured in seconds

→ has one parameter which specifies a location to hold the time

• When we do not want to store the time, pass NULL as the parameter.

• To find the time, we use time() function twice in the program, once at:
→ start of the event

→ end of the event

• When start-time and stop-time are passed as parameters to the function time(), the function returns

the difference between 2 times measured in seconds.

 Program 1.15: Sequential search Program 1.16: program to time program 1.15

DATA STRUCTURES WITH C

If we keep doing things the same way, we're only going to see the same results.

 13

UNIT 2: ARRAYS AND STRUCTURES

ARRAY

• This is collections of elements of the same basic data type.
Structure Array is
objects: A set of pairs <index, value> where for each value of index there is a value from
 the set item. Index is a finite ordered set of one or more dimensions, for example,
 {0, … , n-1} for one dimension,
 {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for two dimensions, etc.
 Functions:
 for all A  Array, i  index, x  item, j, size  integer

 Array Create(j, list) ::= return an array of j dimensions where list is a j-tuple whose ith
 element is the size of the ith dimension. Items are undefined.
 Item Retrieve(A, i) ::= if (i  index)

 return the item associated with index value i in array A
 else
 return error
 Array Store(A, i, x) ::= if (i in index)
 return an array that is identical to array A except the new pair
 <i, x> has been inserted
 else
 return error
end array

ADT 2.1: Abstract data type Array

 #define MAX_SIZE 100
 float sum(float [], int);
 float input[MAX_SIZE], answer;
 int i;
 void main (void)
 {

 for (i = 0; i < MAX_SIZE; i++)
 input[i] = i;
 answer = sum(input, MAX_SIZE);
 printf("The sum is: %f\n", answer);

 }
 float sum(float list[], int n)
 {

 int i;
 float tempsum = 0;
 for (i = 0; i < n; i++)
 tempsum += list[i];

 return tempsum;
 }

Program 2.1: Program to find sum of n numbers

DATA STRUCTURES WITH C

For every finger we point at another, we have three pointing back at us.

 14

ARRAYS IN C

• A one-dimensional array can be declared as follows:
int list[5]; //array of 5 integers
int *plist[5]; //array of 5 pointers to integers

• Compiler allocates 5 consecutive memory-locations for each of the variables 'list' and 'plist'.

• Address of first element list[0] is called base-address.

• Memory-address of list[i] can be computed by compiler as

 +i*sizeof(int) where =base address

void print1(int *ptr, int rows)
{
 /* print out a one-dimensional array using a pointer */
 int i;
 printf(“Address Contents\n”);
 for (i=0; i < rows; i++)
 printf(“%8u%5d\n”, ptr+i, *(ptr+i));
 printf(“\n”);
}

void main()
{
 int one[] = {0, 1, 2, 3, 4};
 print1(&one[0], 5)
}

Program 2.2:Program to print both address of ith element of given array & the value found at that address(Fig 2.1)

Figure 2.1: one dimensional array addressing

DATA STRUCTURES WITH C

The people who endure more pain & suffering are meant for greater things on the planet.

 15

DYNAMICALLY ALLOCATED ARRAYS

ONE-DIMENSIONAL ARRAYS

• When writing programs, sometimes we cannot reliably determine how large an array must be.

• A good solution to this problem is to
→ defer this decision to run-time &

→ allocate the array when we have a good estimate of required array-size

• Dynamic memory allocation can be performed as follows:
int i,n,*list;
printf("enter the number of numbers to generate");
scanf("%d",&n);
if(n<1)
{

printf("improper value");
exit(0);

}
MALLOC(list, n*sizeof(int));

• The above code would allocate an array of exactly the required size and hence would not result in

any wastage.

TWO DIMENSIONAL ARRAYS

• These are created by using the concept of array of arrays.

• A 2-dimensional array is represented as a 1-dimensional array in which each element has a pointer

to a 1-dimensional array as shown below
 int x[5][7]; //we create a 1-dimensional array x whose length is 5;

//each element of x is a 1-dimensional array whose length is 7.

• Address of x[i][j] = x[i]+j*sizeof(int)

Figure 2.2: Array-of-arrays representation

#include <stdlib.h>
int **array;
array = malloc(nrows * sizeof(int *));
if(array == NULL)
{

printf("out of memory\n");
exit or return

}
for(i = 0; i < nrows; i++)

{
array[i] = malloc(ncolumns * sizeof(int));
if(array[i] == NULL)

 {
printf("out of memory\n");
exit or return

}
}

Program 2.3: Dynamically create a two-dimensional array

DATA STRUCTURES WITH C

One of the organizing principles that any great life is built around is this one: 'Simplify, simplify, simplify.'

 16

CALLOC

• These functions
→ allocate user-specified amount of memory &

→ initialize the allocated memory to 0.

• On successful memory-allocation, it returns a pointer to the start of the new block.

On failure, it returns the value NULL.

• Memory can be allocated using calloc as shown below:
int *p;
p=calloc(n, sizeof(int)); //where n=array size

• To create clean and readable programs, a CALLOC macro can be created as shown below:
#define CALLOC(p,n,s) \
if((p=calloc(n,s))==NULL) \
{ \
 printf("insufficient memory"); \
 exit(1); \
} \

REALLOC

• These functions resize memory previously allocated by either malloc or calloc.

 For example,

 realloc(p,s); //this changes the size of memory-block pointed at by p to s.

• When s>oldSize, the additional s-oldSize have an unspecified value and

 when s<oldSize, the rightmost oldSize-s bytes of old block are freed.

• On successful resizing, it returns a pointer to the start of the new block.

On failure, it returns the value NULL.

• To create clean and readable programs, the REALLOC macro can be created as shown below
#define REALLOC(p,s) \
if((p=realloc(p,s))==NULL) \
{ \

printf("insufficient memory"); \
 exit(0); \

 }

DATA STRUCTURES WITH C

We have forty million reasons for failure, but not a single excuse.

 17

STRUCTURES

• This is collection of elements whose data types are different.
typedef struct
{

char name[10];
int age;
float salary;

 }humanBeing;

• Dot operator(.) is used to access a particular member of the structure. For ex,
 person.age=10;
 person.salary=35000;
 strcpy(person.name,"james");

• Variables can be declared as follows
humanBeing person1,person2;

• Structures cannot be directly checked for equality or inequality. So, we can write a function to do

this.
if(humansEqual(person1,person2))

printf("two human beings are same");
else

printf("two human beings are different");

--

int humansEqual(humanBeing person1,humanBeing person2)
{

if(strcmp(person1.name,person2.name))
return 0;

if(person1.age!=person2.salary)
return 0;

if(person.salary!=person2.salary)
return 0;

 return 1;
}

• We can embed a structure within a structure.
typedef struct
{
 int month;
 int day;
 int year;
}date;

typedef struct
{
 char name[10];
 int age;
 float salary;
 data dob;
}humanBeing;

DATA STRUCTURES WITH C

When you shift from a compulsion to survive toward a commitment to serve others, your life cannot help but explode

 into success.

 18

SELF-REFERENTIAL STRUCTURES

• A self-referential structure is one in which one or more of its components is a pointer to itself.

• These require dynamic storage management routines (malloc & free) to explicitly obtain and release

memory.
typedef struct
{
 char data;
 struct list *link; //list is a pointer to a list structure

 }list;

• Consider three structures and values assigned to their respective fields:
list item1,item2,item3;
item1.data='a';
item2.data='b';
item3.data='c';
item1.link=item2.link=item3.link=NULL;

• We can attach these structures together as follows
item1.link=&item2;
tem2.link=&item3;

UNION

• This is similar to a structure, but the fields of a union must share their memory space. This means

that only one field of the union is "active" at any given time. For ex,
typedef struct
{
 enum tagField{female,male} sex;
 typedef union
 {
 int children;
 int beard;
 }u;
}sexType;

typedef struct
{
 char name[10];
 int age;
 float salary;
 date dob;
 sexType sexInfo;
}humanBeing;

humanBeing person1,person2;

• We can assign values to person1 and person2 as:
person1.sexInfo.sex=male;
person1.sexInfo.u.beard=FALSE;
and
person2.sexInfo.sex=female;
person1.sexInfo.u.children=3;

INTERNAL IMPLEMENTATION OF STRUCTURES

• The size of an object of a struct or union type is the amount of storage necessary to represent the

largest component, including any padding that may be required.

• Structures must begin and end on the same type of memory boundary. For ex, an even byte

boundary (2, 4, 6 or 8).

DATA STRUCTURES WITH C

 Life will bring you pain all by itself. Your responsibility is to create joy.

 19

POLYNOMIALS

ABSTRACT DATA TYPE

• A polynomial is a sum of terms, where each term has a form axe,

where x=variable, a=coefficient and e=exponent.

For ex,

A(x)=3x20+2x5+4 and B(x)=x4+10x3+3x2+1

• The largest(or leading) exponent of a polynomial is called its degree.

• Assume that we have 2 polynomials,

A(x)= ∑ai x
i & B(x)= ∑bi x

i then A(x)+B(x)= ∑(ai + bi)x
i

Structure Polynomial is
 objects: p(x)=a1x

e + . . anx
e ; a set of ordered pairs of <ei,ai> where ai in Coefficients

 and ei in Exponents, ei are integers >= 0
functions:
for all poly, poly1, poly2  Polynomial, coef Coefficients, expon  Exponents

Polynomial Zero() ::= return the polynomial, p(x) = 0
Boolean IsZero(poly) ::= if (poly)
 return FALSE
 else
 return TRUE
Coefficient Coef(poly, expon) ::= if (expon  poly)

 return its coefficient

 else
 return Zero
Exponent Lead_Exp(poly) ::= return the largest exponent in poly
Polynomial Attach(poly,coef, expon) ::= if (expon  poly)

 return error
 else
 return the polynomial poly with the term <coef,
 expon> inserted
Polynomial Remove(poly, expon)::= if (expon  poly)

 return the polynomial poly with the term whose
 exponent is expon deleted
 else
 return error
Polynomial SingleMult(poly, coef, expon) ::= return the polynomial poly • coef • xexpon
Polynomial Add(poly1, poly2) ::= return the polynomial poly1 +poly2
Polynomial Mult(poly1, poly2)::= return the polynomial poly1 • poly2
End Polynomia

ADT 2.2: Abstract data type Polynomial

DATA STRUCTURES WITH C

 A person who doesn't truly know themselves really knows nothing.

 20

POLYNOMIAL REPRESENTATION: FIRST METHOD
#define MAX_DEGREE 100
typedef struct
{

int degree;
float coef[MAX_DEGREE];

}polynomial;

polynomial a;

/* d =a + b, where a, b, and d are polynomials */
d = Zero()
while (! IsZero(a) && ! IsZero(b))
do
{
 switch COMPARE (Lead_Exp(a), Lead_Exp(b))
 {
 case -1: d = Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b));
 b = Remove(b, Lead_Exp(b));
 break;
 case 0: sum = Coef (a, Lead_Exp (a)) + Coef (b, Lead_Exp(b));
 if (sum)

 {
 Attach (d, sum, Lead_Exp(a));
 a = Remove(a , Lead_Exp(a));
 b = Remove(b , Lead_Exp(b));
 }
 break;

 case 1: d = Attach(d, Coef (a, Lead_Exp(a)), Lead_Exp(a));
 a = Remove(a, Lead_Exp(a));
 }

}
insert any remaining terms of a or b into d

Program 2.5: Initial version of padd function

• If a is of type ‘polynomial’ then A(x)= ∑ai x
i can be represented as:

a.degree=n

a.coeff[i]=a n-i

• In this representation, we store coefficients in order of decreasing exponents, such that a.coef[i] is

the coefficient of xn-i provided a term with exponent n-i exists; otherwise, a.coeff[i]=0 (Figure 2.3a).

• Disadvantage: This representation wastes a lot of space. For instance, if a.degree<<MAX_DEGREE

and polynomial is sparse, then we will not need most of the positions in a.coef[MAX_DEGREE] (sparse

means number of terms with non-zero coefficient is small relative to degree of the polynomial).

Figure 2.3a: Array representation of two polynomials

DATA STRUCTURES WITH C

When you know what's most important in your life, then you can be more selective about what you do & what you don't do.

 21

POLYNOMIAL REPRESENTATION: SECOND METHOD
#define MAX_TERMS 100
typedef struct polynomial
{

float coef;
int expon;

}polynomial;

polynomial terms[MAX_TERMS];
 int avail=0;

• A(x)=2x1000+1 and B(x)=x4+10x3+3x2+1 can be represented as shown below.

Figure 2.3b: Array representation of two polynomials

• startA & startB give the index of first term of A and B respectively (Figure 2.3b).

finishA & finishB give the index of the last term of A & B respectively

avail gives the index of next free location in the array.

• Any polynomial A that has ‘n’ non-zero terms has startA & finishA such that finishA=startA+n-1

• Advantage: This representation solves the problem of many 0 terms since A(x)-2x1000+1 uses only 6

units of storage (one for startA, one for finishA, 2 for the coefficients and 2 for the exponents)

• Disadvantage: However, when all the terms are non-zero, the current representation requires about

twice as much space as the first one.

DATA STRUCTURES WITH C

A great life is measured not by decades but by deeds.

 22

POLYNOMIAL ADDITION
void padd (int starta, int finisha, int startb, int finishb,int * startd, int *finishd)
{
 /* add A(x) and B(x) to obtain D(x) */

 float coefficient;
 *startd = avail;
 while (starta <= finisha && startb <= finishb)
 {
 switch (COMPARE(terms[starta].expon, terms[startb].expon))
 {
 case -1: /* a expon < b expon */
 attach(terms[startb].coef, terms[startb].expon);
 startb++
 break;

 case 0: /* equal exponents */
 coefficient = terms[starta].coef + terms[startb].coef;
 if (coefficient)
 attach (coefficient, terms[starta].expon);
 starta++;
 startb++;
 break;
 case 1: /* a expon > b expon */
 attach(terms[starta].coef, terms[starta].expon);
 starta++;

 }
 /* add in remaining terms of A(x) */
 for(; starta <= finisha; starta++)
 attach(terms[starta].coef, terms[starta].expon);
 /* add in remaining terms of B(x) */
 for(; startb <= finishb; startb++)
 attach(terms[startb].coef, terms[startb].expon);
 *finishd =avail -1;
 }
}

Program 2.6:Function to add two polynomials

void attach(float coefficient, int exponent)
{
 /* add a new term to the polynomial */
 if (avail >= MAX_TERMS)
 {
 fprintf(stderr, “Too many terms in the polynomial\n”);
 exit(1);
 }
 terms[avail].coef = coefficient;
 terms[avail++].expon = exponent;
}

Program 2.7: Function to add a new term

ANALYSIS

• Let m and n be the number of non-zero terms in A and B respectively.

• If m>0 and n>0, the while loop is entered.

At each iteration, we increment the value of startA or startB or both.

• Since the iteration terminates when either startA or startB exceeds finishA or finishB respectively, the

number of iterations is bounded by m+n-1.

This worst case occurs when

A(x)=∑ x2i and B(x)=∑x2i+1

• The asymptotic computing time of this algorithm is O(n+m)

DATA STRUCTURES WITH C

Free flow is a state of living where you have present moment awareness. Every cell within you is engaged in the

moment you're living.

 23

SPARSE MATRICES

• Sparse matrix contains many zero entries.

• When a sparse matrix is represented as a 2-dimensional array, we waste space (Figure 2.4b).

• For ex, if 100*100 matrix contains only 100 entries then we waste 9900 out of 10000 memory

spaces.

• Solution: Store only the non-zero elements.

Figure 2.4: Two matrices

Structure Sparse_Matrix is
 objects: a set of triples, <row, column, value>, where row and column are integers and
 form a unique combination, andvalue comes from the set item.
 functions:
 for all a, b  Sparse_Matrix, x  item, i, j, max_col, max_row  index

 Sparse_Marix Create(max_row, max_col) ::=
 return a Sparse_matrix that can hold up to max_items = max _row 

 max_col and whose maximum row size is max_row and whose
 maximum column size is max_col.
Sparse_Matrix Transpose(a) ::=

 return the matrix produced by interchanging the row and column
 value of every triple.
Sparse_Matrix Add(a, b) ::=
 if the dimensions of a and b are the same
 return the matrix produced by adding corresponding items, namely
 those with identical row and column values.
 else
 return error
Sparse_Matrix Multiply(a, b) ::=
 if number of columns in a equals number of rows in b
 return the matrix d produced by multiplying a by b according to the
 formula:d [i] [j]=(a[i][k]•b[k][j]) where d (i, j) is the (i,j)th element

 else
 return error.
End Sparse_Matrix

ADT 2.3: Abstract data type SparseMatrix

DATA STRUCTURES WITH C

The world will be either better or worse depending on whether we become better or worse.

 24

SPARSE MATRIX REPRESENTATION

• We can classify uniquely any element within a matrix by using the triple <row,col,value>. Therefore,

we can use an array of triples to represent a sparse matrix (Figure 2.5).

SpareMatrix Create(maxRow,maxCol) ::=
 #define MAX_TERMS 101
 typedef struct term
 {
 int col;
 int row;
 int value;
 } term;

term a[MAX_TERMS];

Figure 2.5: Sparse matrix and its transpose stored as triples

• a[0].row contains the number of rows;

 a[0].col contains number of columns and

a[0].value contains the total number of nonzero entries.

TRANSPOSING A MATRIX

• To transpose a matrix ,we must interchange the rows and columns.

• Each element a[i][j] in the original matrix becomes element b[j][i] in the transpose matrix.

• Algorithm To transpose a matrix:
for all elements in column j
place element <i,j,value> in
element <j,i,value>

void transpose (term a[], term b[])
{ /* b is set to the transpose of a */
 int n, i, j, currentb;
 n = a[0].value; /* total number of elements */
 b[0].row = a[0].col; /* rows in b = columns in a */
 b[0].col = a[0].row; /*columns in b = rows in a */
 b[0].value = n;
 if (n > 0)

{ /*non zero matrix */
 currentb = 1;
 for (i = 0; i < a[0].col; i++) /* transpose by columns in a */
 for(j = 1; j <= n; j++) /* find elements from the current column */
 if (a[j].col == i)
 { /* element is in current column, add it to b */

 b[currentb].row = a[j].col;
 b[currentb].col = a[j].row;
 b[currentb].value = a[j].value;
 currentb++

 }
 }
}

Program 2.7: Transpose of a sparse matrix

DATA STRUCTURES WITH C

Life's all about striking a balance: Get the head & the heart working as team-mates, as life partners.

 25

void fast_transpose(term a[], term b[])
{ /* the transpose of a is placed in b */
 int row_terms[MAX_COL], starting_pos[MAX_COL];
 int i, j, num_cols = a[0].col, num_terms = a[0].value;
 b[0].row = num_cols; b[0].col = a[0].row;
 b[0].value = num_terms;
 if (num_terms > 0)
 { /*nonzero matrix*/
 for (i = 0; i < num_cols; i++)
 row_terms[i] = 0;
 for (i = 1; i <= num_terms; i++)
 row_term [a[i].col]++
 starting_pos[0] = 1;
 for (i =1; i < num_cols; i++)
 starting_pos[i]=starting_pos[i-1] +row_terms [i-1];
 for (i=1; i <= num_terms, i++)

 {
 j = starting_pos[a[i].col]++;
 b[j].row = a[i].col;
 b[j].col = a[i].row;
 b[j].value = a[i].value;
 }
 }
}

Program 2.8: Fast transpose of a sparse matrix

void mmult (term a[], term b[], term d[])
{ /* multiply two sparse matrices */
 int i, j, column, totalb = b[].value, totald = 0;
 int rows_a = a[0].row, cols_a = a[0].col,
 totala = a[0].value; int cols_b = b[0].col,
 int row_begin = 1, row = a[1].row, sum =0;
 int new_b[MAX_TERMS][3];
 if (cols_a != b[0].row)

{
 fprintf (stderr, “Incompatible matrices\n”);
 exit (1);
 }

fast_transpose(b, new_b);
 a[totala+1].row = rows_a; /* set boundary condition */
 new_b[totalb+1].row = cols_b;
 new_b[totalb+1].col = 0;
 for (i = 1; i <= totala;)

{
 column = new_b[1].row;
 for (j = 1; j <= totalb+1;)

 { /* mutiply row of a by column of b */
 if (a[i].row != row)

 {
 storesum(d, &totald, row, column, &sum);
 i = row_begin;
 for (; new_b[j].row == column; j++);
 column =new_b[j].row
 }

else
 switch (COMPARE (a[i].col, new_b[j].col))
 {

 case -1: i++; break; /* go to next term in a */
 case 0: /* add terms, go to next term in a and b */
 sum += (a[i++].value * new_b[j++].value);
 case 1: j++ /* advance to next term in b*/

 }
} /* end of for j <= totalb+1 */
for (; a[i].row == row; i++);
 row_begin = i; row = a[i].row;

} /* end of for i <=totala */
 d[0].row = rows_a;
 d[0].col = cols_b; d[0].value = totald;
}

Praogram 2.9: Sparse matrix multiplication

DATA STRUCTURES WITH C

The easiest things to do are also the things that are easiest not to do.

 26

void storesum(term d[], int *totald, int row, int column, int *sum)
{
 /* if *sum != 0, then it along with its row and column
 position is stored as the *totald+1 entry in d */
 if (*sum)
 if (*totald < MAX_TERMS)

 {
 d[++*totald].row = row;
 d[*totald].col = column;
 d[*totald].value = *sum;
 }
 else
 {
 fprintf(stderr, ”Numbers of terms in product exceed %d\n”, MAX_TERMS);
 exit(1);

 }
}

}

Program 2.10: storsum function

DATA STRUCTURES WITH C

The most pathetic person in the world is someone who has sight but has no vision.

 27

UNIT 3: STACKS AND QUEUES

STACK

• This is an ordered-list in which insertions(called push) and deletions(called pop) are made at one end

called the top (Figure 3.1).

• Since last element inserted into a stack is first element removed, a stack is also known as a LIFO

list(Last In First Out).

SYSTEM STACK

• A stack used by a program at run-time to process function-calls is called system-stack (Figure 3.2).

• When functions are invoked, programs
→ create a stack-frame(or activation-record) &

→ place the stack-frame on top of system-stack

• Initially, stack-frame for invoked-function contains only
→ pointer to previous stack-frame &

→ return-address

• The previous stack-frame pointer points to the stack-frame of the invoking-function

 while return-address contains the location of the statement to be executed after the

function terminates.

• If one function invokes another function, local variables and parameters of the invoking-function are

added to its stack-frame.

• A new stack-frame is then
→ created for the invoked-function &

→ placed on top of the system-stack

• When this function terminates, its stack-frame is removed (and processing of the invoking-function,

which is again on top of the stack, continues).

• Frame-pointer(fp) is a pointer to the current stack-frame.

DATA STRUCTURES WITH C

Most people die with the great song of their lives remaining unsung.

 28

structure Stack is
 objects: a finite ordered list with zero or more elements.
 functions:
 for all stack  Stack, item  element, max_stack_size  positive integer

 Stack CreateS(max_stack_size) ::=
 create an empty stack whose maximum size is max_stack_size

 Boolean IsFull(stack, max_stack_size) ::=
 if(number of elements in stack == max_stack_size)
 return TRUE
 else
 return FALSE

 Stack Add(stack, item) ::=
 if (IsFull(stack))
 stack_full
 else
 insert item into top of stack and return

 Boolean IsEmpty(stack) ::=
 if(stack == CreateS(max_stack_size))
 return TRUE
 else
 return FALSE

 Element Delete(stack) ::=
 if(IsEmpty(stack))
 return
 else
 remove and return the item on the top of the stack

ADT Stack 3.1

• Here, MAX_STACK_SIZE=maximum number of entries.

• The first element of the stack is stored in stack[0].

• ’top’ points to the top element in the stack (top=-1 to denote an empty stack).

• The CreateS() function can be implemented as follows:
Stack CreateS(maxStackSize)::=

#define MAX_STACK_SIZE 100
struct element
{

int key;
};

element stack[MAX_STACK_SIZE];
int top=-1;
Boolean IsEmpty(Stack)::= top<0; //used to check if stack is empty
Boolean IsFull(Stack) ::= top>=MAX_STACK_SIZE-1; //used to check if stack is full

void add(int top, element item)
{
 if (top >= MAX_STACK_SIZE-1)
 {
 stack_full();
 return;
 }
 stack[++top] = item;
}

Program 3.1: Add an item to a stack

element delete(int top)
{
 if (top == -1)
 return stack_empty(); /* returns and error key */
 return stack[(top)--];
 }

Program 3.2: Delete from a stack

• Function push() checks to see if the stack is full. If it is, it calls stackFull, which prints an error

message and terminates execution.

• When the stack is not full, we increment top and assign item to stack[top].

DATA STRUCTURES WITH C

Without personal accountability, it's easy to escape from your commitment to making the dream happen.

 29

STACK USING DYNAMIC ARRAYS

• Shortcoming of static stack implementation: is the need to know at compile-time, a good

bound(MAX_STACK_SIZE) on how large the stack will become.

• This shortcoming can be overcome by
→ using a dynamically allocated array for the elements &

→ then increasing the size of the array as needed

• Initially, capacity=1 where capacity=maximum no. of stack-elements that may be stored in array.

• The CreateS() function can be implemented as follows
Stack CreateS()::=

struct element
{

int key;
};

element *stack;
MALLOC(stack,sizeof(*stack));
int capacity=-1;
int top=-1;

Boolean IsEmpty(Stack)::= top<0;
Boolean IsFull(Stack) ::= top>=capacity-1;

void stackFull()
{

REALLOC(stack,2*capacity*sizeof(*stack));
capacity=2*capacity;

}

• Once the stack is full, realloc() function is used to increase the size of array.

• In array-doubling, we double array-capacity whenever it becomes necessary to increase the capacity

of an array.

ANALYSIS

• In worst case, the realloc function needs to
→ allocate 2*capacity*sizeof(*stack) bytes of memory and

→ copy capacity*sizeof(*stack) bytes of memory from the old array into the new one.

• The total time spent over all array doublings = O(2k) where capacity=2k

• Since the total number of pushes is more than 2k-1, the total time spend in array doubling is O(n)

 where n=total number of pushes.

DATA STRUCTURES WITH C

The place where your greatest fears live is also the place where your greatest growth lies.

 30

QUEUES

• This is an ordered-list in which insertions & deletions take place at different ends (Figure 3.4).

• The end at which new elements are added is called the rear &

 the end from which old elements are deleted is called the front.

• Since first element inserted into a queue is first element removed, queues are known as FIFO lists.

structure Queue is
 objects: a finite ordered list with zero or more elements.
 functions:
 for all queue  Queue, item  element, max_ queue_ size  positive integer

 Queue CreateQ(max_queue_size) ::=
 create an empty queue whose maximum size is max_queue_size

 Boolean IsFullQ(queue, max_queue_size) ::=
 if(number of elements in queue == max_queue_size)
 return TRUE
 else
 return FALSE

 Queue AddQ(queue, item) ::=
 if (IsFullQ(queue))
 queue_full
 else
 insert item at rear of queue and return queue

 Boolean IsEmptyQ(queue) ::=
 if (queue ==CreateQ(max_queue_size))
 return TRUE
 else
 return FALSE

 Element DeleteQ(queue) ::=
 if (IsEmptyQ(queue))
 return
 else
 remove and return the item at front of queue

ADT 3.2: Abstract data type Queue

• The CreateQ() function can be implemented as follows
Queue CreateQ(maxQueueSize)::=

#define MAX_QUEUE_SIZE 100
struct element
{

int key;
};

element queue[MAX_QUEUE_SIZE];
int rear=-1;
int front=-1;
Boolean IsEmptyQ(queue)::= front==rear;
Boolean IsFullQ(queue)::= rear=MAX_QUEUE_SIZE-1;

void addq(int rear, element item)
{
 if (rear == MAX_QUEUE_SIZE_1)
 {
 queue_full();
 return;
 }
 queue [++rear] = item;
}

element deleteq(int front, int rear)
{
 if (front == rear)
 return queue_empty();
 return queue [++ front];
}

Program 3.5: Add to a queue Program 3.6: Delete from a queue

DATA STRUCTURES WITH C

The law of attraction says that we attract into our life that which we focus on.

 31

JOB SCHEDULING

• Queues are used for the creation of a job-queue by an operating-system (Figure 3.5).

• If operating-system does not use, then the jobs are processed in the order they enter the system.

CIRCULAR QUEUE

• In a circular-queue, the elements are arranged implicitly in a circle (Figure 3.7).

• When the array is viewed as a circle, each array position has a next and a previous position.

void addq(int front, int rear, element item)
{
 rear = (rear +1) % MAX_QUEUE_SIZE;
 if (front == rear) /* reset rear and print error */
 return;
 queue[rear] = item;
}

 Program 3.7: Add to a circular queue

element deleteq(int front, int rear)
{
 element item;
 if (front == rear)
 return queue_empty(); /* queue_empty returns an error key */
 front = (front+1) % MAX_QUEUE_SIZE;
 return queue[front];
}

Program 3.8: Delete from a circular queue

DATA STRUCTURES WITH C

 Too many people are leaving the quality of their futures to chance rather than to choice.

 32

CIRCULAR QUEUES USING DYNAMICALLY ALLOCATED ARRAYS

• Shortcoming of static queue implementation: is the need to know at compile-time, a good

bound(MAX_QUEUE _SIZE) on how large the queue will become.

• This shortcoming can be overcome by
→ using a dynamically allocated array for the elements &

→ then increasing the size of the array as needed

• In array-doubling, we double array-capacity whenever it becomes necessary to increase the capacity

of an array (Figure 3.8).

Figure 3.8: Doubling queue capacity

• To get a proper circular queue configuration, we must slide the elements in the right segment to the

right end of the array (Figure 3.8d).

• The array doubling and the slide to the right together copy at most 2*capacity-2 elements.

• The number of elements copied can be limited to capacity-1 by customizing the array doubling code

so as to obtain the configuration of Figure3.8e. This configuration may be obtained as follows:

1) Create a new array newQueue of twice the capacity.

2) Copy the second segment to positions in newQueue begining at 0.

3) Copy the first segment to positions in newQueue begining at capacity-front-1.

Program 3.9: Add to a circular queue

Program 3.10: Doubling queue capacity

DATA STRUCTURES WITH C

You are the creator of the moods you experience, moods that you can change in a single instant.

 33

precedence get_token(char *symbol, int *n)
{
 *symbol =expr[(*n)++];
 switch (*symbol)
 {
 case ‘(‘ : return lparen;
 case ’)’ : return rparen;
 case ‘+’: return plus;
 case ‘-’ : return minus;
 case ‘/’ : return divide;
 case ‘*’ : return times;
 case ‘%’ : return mod;
 case ‘\0‘ : return eos;
 default : return operand;
 }

}

Program 3.14: Function to get a token from the input string

INFIX TO POSTFIX

• Algorithm for producing a postfix expression from an infix is as follows (Figure 3.14):

1) Fully parenthesize the expression

2) Move all binary operators so that they replace their corresponding right parentheses

3) Delete all parentheses

• For ex, a/b-c+d*e-a*c when fully parenthesized becomes:

((((a/b)-c)+(d*e))-a*c))

• Performing steps 2 and 3 gives

ab/c-de*+ac*-

• This algorithm is inefficient on a computer because it requires 2 passes.

• The first pass reads the expression and parenthesizes it

while the second pass moves the operators.

• Since the order of operands is same in infix and postfix, we can form the postfix equivalent by

scanning the infix expression left-to-right.

• During this scan, operands are passed to the output expression as they are encountered.

• However, the order in which the operators are output depends on their precedence (Figure 3.12).

• Since we must output the higher precedence operators first, we save operators until we know their

correct placement. A stack is one way of doing this.

 Figure 3.14: Infix and postfix notation

Example 3.3[Simple expression]: Consider simple expression a+b*c which yields abc*+ in postfix.

• The operands are output immediately, but the two operators need to be reversed (Figure 3.15):

• In general, operators with higher precedence must be output before those with lower precedence.

Therefore, we stack operators as long as the precedence of the operator at the top of the stack is less

than the precedence of the incoming operator.

Figure 3.15:Translation of a+b*c to postfix

DATA STRUCTURES WITH C

Life change takes time, effort & patience.

 34

EVALUATING POSTFIX EXPRESSIONS

• In infix notation, a binary-operator is in-between 2 operands.

In postfix notation, a binary-operator follows the 2 operands.

In prefix notation, a binary-operator precedes the 2 operands.

• Although infix notation is the most common way of writhing expressions, it is not the one used by

compilers to evaluate expressions.

• Instead compilers typically use a parenthesis-free postfix notation.

• Steps for evaluating postfix expression (Figure 3.13):

1) Scan the symbol from left to right.

2) If the scanned-symbol is an operand, push it on to the stack.

3) If the scanned-symbol is an operator, pop 2 elements from the stack. And perform the

indicated operation.

4) Push the result on to the stack.

5) Repeat the above procedure till the end of input is encountered.

 Figure 3.13: Postfix evaluation of 6 2/3-4 2*+

int eval(void)
{
 precedence token;
 char symbol;

 int op1, op2;
 int n = 0; /* counter for the expression string */
 int top = -1;
 token = get_token(&symbol, &n);
 while (token != eos)
 {
 if (token == operand)
 add(&top, symbol-’0’); /* stack add */
 else
 {
 /* remove two operands, perform operation, and
 return result to the stack */
 op2 = delete(&top); /* stack delete */
 op1 = delete(&top);
 switch(token)

{
 case plus: add(&top, op1+op2); break;
 case minus: add(&top, op1-op2); break;
 case times: add(&top, op1*op2); break;
 case divide: add(&top, op1/op2); break;
 case mod: add(&top, op1%op2);
 }
 }
 token = get_token (&symbol, &n);

 }
 return delete(&top); /* return result */
}

Program 3.13: Function to evaluate a postfix expression

DATA STRUCTURES WITH C

The great & glorious masterpiece of men is to live to the point.

 35

Example 3.4[Parenthesized expression]: Consider the expression a*(b+c)*d, which yields

abc+*d* in postfix (Figure 3.16).

• We stack operators until we reach the right parenthesis.

• At this point, we unstack until we reach the corresponding left parenthesis.

• We then delete the left parenthesis from the stack.(The right parenthesis is never put on the stack).

Figure 3.16:Translation of a+(b*c)*d to postfix

• We have two types of precedence:

1) in-stack precedence(isp)

2) incoming precedence(icp).

• The declarations that establish these precedences are:

/* isp and icp arrays -- index is value of precedence lparen ,rparen, plus, minus ,times, divide,

mod, eor */

int isp[]={0,19,12,12,13,13,13,0};

int icp[]={20,19,12,12,13,13,13,0};

• We remove an operator from stack only if its in-stack-precedence(isp) is greater than or equal to the

incoming precedence(icp) of the new operator.

void postfix(void)
{
 /* output the postfix of the expression. The expression string, the stack, and top are global */
 char symbol;
 precedence token;
 int n = 0;
 int top = 0; /* place eos on stack */

 stack[0] = eos;
 for (token = get _token(&symbol, &n); token != eos; token = get_token(&symbol, &n))
 {
 if (token == operand)
 printf (“%c”, symbol);
 else if (token == rparen)
 {
 /*unstack tokens until left parenthesis */
 while (stack[top] != lparen)
 print_token(delete(&top));
 delete(&top); /*discard the left parenthesis */
 }
 else
 {
 /* remove and print symbols whose isp is greater
 than or equal to the current token’s icp */
 while(isp[stack[top]] >= icp[token])
 print_token(delete(&top));
 add(&top, token);
 }
 }
 while ((token = delete(&top)) != eos)
 print_token(token);
 print(“\n”);
}

Program 3.15:Function to convert Infix to Postfix

DATA STRUCTURES WITH C

To maintain a health level of optimism & passion for life, you must keep on setting higher & higher goals.

 36

MULTIPLE STACKS

• Assume that we have ‘n’ stacks, we can divide the available memory into ‘n’ segments (Fig: 3.18).

• Let ‘i’ = stack number of one of n stacks.

• Let boundary[i] (0<=i<MAX_STACKS) points to position immediately to left of bottom element of

stack i, while top[i] (0<=i<MAX_STACKS) points to top element.

• Stack i is empty iff boundary[i]=top[i]

• The relevant declaration are:
#define MEMORY_SIZE 100 /* size of memory */
#define MAX_STACKS 10 /* max number of stacks plus 1 */
element memory[MEMORY_SIZE];
int top[MAX_STACKS];
int n; /* number of stacks entered by the user */

• To divide the array into equal segment, we use the following code:
top[0]=boundary[0]=-1;
for(j=1;j<n;j++)
top[j]=boundary[j]=(MEMORY_SIZE/n)*j;
boundary[n]=MEMORY_SIZE-1;

Figure 3.18: Initial configuration for n stacks in memory[m]

 Program 3.16:Add an item to the ith stack Program 3.17:Delete an item from the ith stack

Figure 3.19:Configuration when stack i meets stack i+1,but the memory is not full

• In push function, top[i]==boundary[i+1] condition implies only that a particular stack ran out of

memory, not that the entire memory is full.(In fact, there may be a lot of unused space between other

stacks in array memory).

• Therefore, we create an error recovery function, stackFull, which determines if there is any free

space in memory.

• If there is space available, it should shift the stacks so that space is allocated to the full stack.

• We can guarantee that stackFull adds elements as long as there is free space in array memory if we:

1) Determine the least j, i<j<n such that there is free space between stacks j and j+1 i.e.

top[j]<boundary[j+1]. If there is such a j, then move stacks i+1,i+2j one position to

the right. This creates a space between stacks i and i+1.

1) If there is no j as in (i),then look to the left of stack i. Find the largest j such that 0<=j<i

and there is space between stacks j and j+1 i.e. top[j]<boundary[j+1]. If there is such a j, then

move stacks j+1,j+2.i one space to the left. This also creates a space between stacks i

and i+1.

3) If there is no j satisfying either (i) or (ii),then all MEMORY_SIZE spaces of memory are

utilized and there is no free space. In this case, stackFull terminates with an error message.

DATA STRUCTURES WITH C

To get the best from life, you must be completely present & mindful in every minute of every hour of every day.

 37

UNIT 5: TREES

TREE

• This is a finite set of one or more nodes such that

1) There is a specially designated node called root.

2) Remaining nodes are partitioned into disjoint sets T1, T2. Tn where each of these are

called subtrees of root(Figure 5.2).

• Consider the tree shown below

TERMINOLOGIES USED IN A TREE

• Node contains
→ item of information &

→ links to other nodes

• Number of subtrees of a node is called its degree.

For e.g., degree of A=3; degree of C=1

• Nodes with degree=0 are called terminal(leaf) nodes (For e.g., K, L, F, G, M, I, J)

whereas other nodes are referred to as non-terminals (For e.g., B, E, F, C, H, I, J).

• The subtrees of a node A are the children of A. A is the parent of its children.

For e.g., children of D are H, I and J. Parent of D is A.

• Children of same parent are called siblings.

For e.g., H, I and J are siblings.

• Degree of a tree is maximum of the degree of the nodes in the tree.

 Degree of given tree=3.

• Ancestors of a node are all nodes along the path from root to that node.

For e.g., ancestors of M are A, D and H.

• If a node is at level 'l', then its children are at level 'l+1'.

Height(or depth) of a tree is defined as maximum level of any node in the tree.

For e.g., Height of given tree = 4.

DATA STRUCTURES WITH C

As you live your days, so you will live your life. You change your life the second you make a decision from the depths of

your heart to be a better, more dedicated human being.

 38

REPRESENTATION OF TREES

• A tree can be represented in three forms, namely:

1) List representation

2) Left-child right-sibling representation

 3) Degree-two tree representation (Binary Tree)

LIST REPRESENTATION

• Consider the tree shown below

• The tree can be drawn as a list: (A(B(E(K,L),F),C(G),D(H(M),I,J)))

• The information in the root node comes first, followed by a list of subtrees of that node.

• Each tree-node can be represented by a memory-node that has
→ fields for data &

→ pointers to children of tree-node (Figure 5.3)

• For a tree of degree ‘k’, we can use the node-structure as shown below (Figure 5.4).

DATA STRUCTURES WITH C

To improve your life, you most first improve your thinking.

 39

LEFT CHILD-RIGHT SIBLING REPRESENTATION

• Figure 5.5 shows the node-structure used in left child-right sibling representation.

• Left-child field of each node points to its leftmost child(if any),and

right-sibling field points to the closest right sibling(if any). (Figure 5.6).

DEGREE-TWO TREE REPRESENTATION

• In this representation, we refer to 2 children of a node as left & right children (Fig 5.7).

• Left child-right child trees are also known as binary trees.

DATA STRUCTURES WITH C

 Our lives can change when we become more aware of all the positives we live with.

 40

BINARY TREE

• This is a finite set of nodes that is either empty or consists of
→ a root &

→ two disjoint binary trees called left subtrees and right subtrees

structure Binary_Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or consisting of a root node, left Binary_Tree,
and right Binary_Tree.
functions:
for all bt, bt1, bt2  BinTree, item  element

Bintree Create()::= creates an empty binary tree
Boolean IsEmpty(bt)::= if (bt==empty binary tree)
 return TRUE
 else
 return FALSE
BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is bt1, whose
 right subtree is bt2, and whose root node contains the data item
Bintree Lchild(bt)::= if (IsEmpty(bt))
 return error
 else
 return the left subtree of bt
element Data(bt)::= if (IsEmpty(bt))

 return error
 else
 return the data in the root node of bt
Bintree Rchild(bt)::= if (IsEmpty(bt))
 return error
 else
 return the right subtree of bt

ADT 5.1: Abstract data type Binary_Tree

• Difference between a binary tree and a tree:

1) There is no tree having zero nodes, but there is an empty binary tree.

2) In a binary tree, we distinguish between the order of the children while in a tree we do not.

TYPES OF BINARY TREE

1) Skewed tree is a tree consisting of only left subtree or only right subtree (Figure 5.10a).

2) Full binary tree is a binary tree of depth k having 2k-1 nodes, k>=0 (Figure 5.10b).

3) Complete tree is a binary tree in which every level except possibly last level is completely filled. A

binary tree with n nodes & depth k is complete iff its nodes correspond to nodes numbered from 1 to n

in full binary tree of depth k (Figure 5.11).

DATA STRUCTURES WITH C

Your strategy is really your action plan for closing the gap between vision & results.

 41

PROPERTIES OF BINARY TREES

• The maximum number of nodes on level 'i' of a binary tree is 2i-1, i>=1.

(For e.g. maximum number of nodes on level 4=24-1=23=8).

• The maximum number of nodes in a binary tree of depth 'k' is 2k-1, k>=1.

(For e.g. maximum number of nodes with depth 4=24-1=16-1=15).

• Relation between number of leaf nodes and degree-2 nodes: For any non-empty binary tree ‘T’, if n0

is the number of leaf nodes and n2 the number of nodes of degree 2, then n0=n2+1.

BINARY TREE REPRESENTATIONS

• A binary tree can be represented in two forms, namely:

1) Array Representation

2) Linked Representation

ARRAY REPRESENTATION

• We can use a one-dimensional array to store nodes of binary tree (Figure 5.12).

• If a complete binary tree with ‘n’ nodes is represented sequentially,

then for any node with index i(1<=i<=n) ,we have

1) parent(i) is at [i/2] if i!=1.

If i=1, i is the root and has no parent.

2) leftChild(i) is at 2i if 2i<=n.

If 2i>n, then i has no left child.

3) rightChild(i) is at 2i+1<=n.

If 2i+1>=n, then i has no right child.

• Consider the tree shown below

• Advantage: For complete binary tree, array representation is ideal, as no space is wasted.

Disadvantage: For skewed tree, less than half the array is utilized. In the worst case, a skewed

tree of depth k will require 2k-1 spaces. Of these, only k will be used.

DATA STRUCTURES WITH C

Elite performers never leave the site of a new idea without taking some action to advance it.

 42

LINKED REPRESENTATION

• Shortcoming of array representation: Insertion and deletion of nodes from middle of a tree requires

movement of potentially many nodes to reflect the change in level number of these nodes. These

problems can be overcome easily through the use of a linked representation (Figure 5.14).

• Each node has three fields:

1) leftChild,

2) data and

3) rightChild (Figure 5.13).

typedef struct node *treePointer;

typedef struct
{

int data;
treePointer leftChild,rightChild;

}node;

• Root of tree is stored in the data member 'root' of Tree. This data member serves as access-pointer

to the tree.

DATA STRUCTURES WITH C

To have more in the world, you must give more to others.

 43

BINARY TREE TRAVERSALS

• Tree traversal refers to process of visiting all nodes of a tree exactly once (Figure 5.16).

• There are 3 techniques, namely:

1) Inorder traversal(LVR); 2) Preorder traversal(VLR); 3) Postorder traversal(LRV). (Let L=

moving left, V= visiting node and R=moving right).

• In postorder, we visit a node after we have traversed its left and right subtrees.

 In preorder, the visiting node is done before traversal of its left and right subtrees.

 In inorder, firstly node’s left subtrees is traversed, then node is visited and

 finally node’s right subtrees is traversed.

INORDER TRAVERSAL

• Inorder traversal calls for moving down tree toward left until you can go no farther (Program 5.1).

• Then, you "visit" the node, move one node to the right and continue.

• If you cannot move to the right, go back one more node.

void inorder(tree_pointer ptr)
{ /* inorder tree traversal */
 if (ptr)
 {

 inorder(ptr->left_child);
 printf(“%d”, ptr->data);
 indorder(ptr->right_child);

 }
}

Program 5.1: Inorder traversal of binary tress

• Each step of the trace shows the call of inorder, the value in the root, and whether or not the printf

function is invoked (Figure 5.17).

• Since there are 19 nodes in the tree, inorder() is invoked 19 times for the complete traversal. The

nodes of figure 5.16 would be output in an inorder as

A/B*C*D+E

DATA STRUCTURES WITH C

There's a place deep inside every single one of our hearts that knows all the answers to our biggest questions.

 44

PREORDER TRAVERSAL

• Visit a node, traverse left, and continue (Program 5.2).

• When you cannot continue, move right and begin again or move back until you can move right and

resume.

• The nodes of figure 5.16 would be output in preorder as

+**/ABCDE

void preorder(tree_pointer ptr)
{ /* preorder tree traversal */
 if (ptr)
 {
 printf(“%d”, ptr->data);
 preorder(ptr->left_child);
 predorder(ptr->right_child);
 }
}

Program 5.2: Preorder traversal of binary tress

POSTORDER TRAVERSAL

• Visit a node, traverse right, and continue (Program 5.3).

• When you cannot continue, move left and begin again or move back until you can move left and

resume.

• The nodes of figure 5.16 would be output in postorder as

AB/C*D*E+

void preorder(tree_pointer ptr)
{ /* preorder tree traversal */
 if (ptr)
 {
 printf(“%d”, ptr->data);
 preorder(ptr->left_child);
 predorder(ptr->right_child);
 }
}

Program 5.3: Postorder traversal of binary tress

DATA STRUCTURES WITH C

Failure reawakens us to who we really are & to what we truly want, & it shakes us out of our complacency.

 45

ITERATIVE INORDER TRAVERSAL

• wrt figure 5.17, a node that has no action indicates that the node is added to the stack, while a node

that has a printf action indicates that the node is removed from the stack (Program 5.4).

• The left nodes are stacked until a null node is reached, the node is then removed from the stack, and

the node's right child is stacked.

• The traversal continues with the left child.

• The traversal is complete when the stack is empty.

void iter_inorder(tree_pointer node)
{

 int top= -1; /* initialize stack */
 tree_pointer stack[MAX_STACK_SIZE];
 for (;;)
 {
 for (; node; node=node->left_child)
 add(&top, node); /* add to stack */
 node= delete(&top);
 /* delete from stack */
 if (!node) break; /* empty stack */

 printf(“%D”, node->data);
 node = node->right_child;
 }

}

Program 5.4: Iterative Inorder traversal of binary tress

LEVEL-ORDER TRAVERSAL

• This traversal uses a queue (Program 5.7).

• We visit the root first, then the root's left child followed by the root's right child.

• We continue in this manner, visiting the nodes at each new level from the leftmost node to the

rightmost node.

void level_order(tree_pointer ptr)
{ /* level order tree traversal */

 int front = rear = 0;
 tree_pointer queue[MAX_QUEUE_SIZE];
 if (!ptr) return; /* empty queue */
 addq(front, &rear, ptr);
 for (;;)

 {
 ptr = deleteq(&front, rear);

if (ptr)
{
 printf(“%d”, ptr->data);
 if (ptr->left_child)
 addq(front, &rear, ptr->left_child);
 if (ptr->right_child)
 addq(front, &rear, ptr->right_child);
}
else
 break;

}
}

Program 5.7: Level order traversal of binary tress

DATA STRUCTURES WITH C

We need to sharpen our focus & live to the point-- just like a pencil.

 46

THREADED BINARY TREES

• Shortcoming of linked representation of binary tree: There may be more null links than actual

pointers.

• Solution: This drawback can be overcome by replacing null links by pointers, called threads, to other

nodes in the tree.

• To construct the threads, we use the following rules:

 1) If ptr->leftChild =NULL, we replace null link with a pointer to the inorder

 predecessor of ptr (Figure 5.20).

 2) If ptr->rightChild =NULL, we replace null link with a pointer to the inorder

 successor of ptr.

• The node structure is given by following C declarations:
typedef struct threadedtree *threadedPointer;
typedef struct
{

short int leftThread;
threadedPointer leftChild;
char data;
threadedPointer rightChild;
short int rightThread;

}threadedTree;

• When we represent the tree in memory, we must be able to distinguish between threads and normal

pointers. This is done by adding two additional fields to the node structure, leftThread and rightThread

(Figure 5.21).

• Assume that ptr is an arbitrary node in a threaded tree. If ptr->leftThread=TRUE, then ptr->leftChild

contains a thread; otherwise it contains a pointer to the left child (Fig 5.23).

Similarly, if ptr->rightThread=TRUE, then ptr->rightChild contains a thread; otherwise it

contains a pointer to the right child (Figure 5.22).

• We handle the problem of the loose threads by having them point to the header node, root.

• The variable 'root' points to the header.

DATA STRUCTURES WITH C

Life is all about choices. To have a better life, we must less choosing how we are living.

 47

INORDER TRAVERSAL OF A THREADED BINARY TREE
threaded_pointer insucc(threaded_pointer tree)
{
 threaded_pointer temp;

 temp = tree->right_child;
 if (!tree->right_thread)
 while (!temp->left_thread)
 temp = temp->left_child;
 return temp;
}

void tinorder(threaded_pointer tree)
{
 /* traverse the threaded binary tree inorder */

 threaded_pointer temp = tree;
 for (;;)

{
 temp = insucc(temp);
 if (temp==tree) break;
 printf(“%3c”, temp->data);

 }
}

 Program 5.8: Finding inorder successor in threaded BT Program 5.9: Inorder traversal of threaded BT

INSERTING A NODE INTO A THREADED BINARY TREE

• Let new node 'r' be has to be inserted as the right child of a node 's' (Figure 5.23).

• The cases for insertion are

1) If s has an empty right subtree, then the insertion is simple and diagrammed in fig 5.23a.

2) If the right subtree of s is not empty, then this right subtree is made the right subtree of r

after insertion. When this is done, r becomes the inorder predecessor of a node that has a

leftThread==true field, and consequently there is a thread which has to be updated to point to

r. The node containing this thread was previously the inorder successor of s. Figure 5.23b

illustrates the insertion for this case.

void insert_right(threaded_pointer s, threaded_pointer r)
{

 threaded_pointer temp;
 r->right_child = s->right_child;
 r->right_thread = s->right_thread;
 r->left_child = s;
 r->left_thread = TRUE;
 s->right_child = r;
 s->right_thread = FALSE;
 if (!r->right_thread)
 {

 temp = insucc(r);
 temp->left_child = r;
 }

}

Program 5.10: Inserting r as the right child of s

DATA STRUCTURES WITH C

Everything that happens to you is simply an opportunity to grow & heal a part of you that's in need of healing.

 48

HEAPS (PRIORITY QUEUES)

• Heaps are frequently used to implement priority queues.

• In this kind of queue, the element to be deleted is the one with highest (or lowest) priority.

• At any time, an element with arbitrary priority can be inserted into the queue.

structure MaxHeap
 objects: a complete binary tree of n > 0 elements organized so that
the value in each node is at least as large as those in its children
 functions:
 for all heap  MaxHeap, item  Element, n, max_size  integer

 MaxHeap Create(max_size)::= create an empty heap that can hold a maximum of
 max_size elements
 Boolean HeapFull(heap, n)::= if (n==max_size)
 return TRUE
 else
 return FALSE
 MaxHeap Insert(heap, item, n)::= if (!HeapFull(heap,n))
 insert item into heap and return the resulting heap
 else
 return error
 Boolean HeapEmpty(heap, n)::= if (n>0)
 return FALSE
 else
 return TRUE
 Element Delete(heap,n)::= if (!HeapEmpty(heap,n))

 return one instance of the largest element in the heap and
 remove it from the heap
 else
 return error

ADT 5.2: Abstract data type MaxHeap

MAX(MIN) HEAP

• A max tree is a tree in which key value in each node is larger than key values in its children (if any).

 A min tree is a tree in which key value in each node is smaller than key values in its

children (if any).

• A max heap is a complete binary tree that is also a max tree (Figure 5.24).

A min heap is a complete binary tree that is also a min tree (Figure 5.25).

• The key in the root of a max tree is the largest key in the tree,

whereas key in the root of a min tree is the smallest key in the tree.

DATA STRUCTURES WITH C

What you don't own about yourself owns you.

 49

INSERTION INTO A MAX HEAP

• To determine the correct place for the element that is being inserted, we use a bubbling up process

that begins at the new node of the tree and moves toward the root (Figure 5.26).

• The element to be inserted bubbles up as far as is necessary to ensure a max heap following the

insertion.

• The heap is created using the following C declarations
#define MAX_ELEMENTS 200 /* maximum heap size+1*/
#define HEAP_FULL(n) (n==MAX_ELEMENTS-1)
#define HEAP_EMPTY(n) (!n)
typedef struct
{

int key;
}element;
element heap[MAX_ELEMENTS];
int n=0;

void insert_max_heap(element item, int *n)

{
 int i;
 if (HEAP_FULL(*n))
 {
 fprintf(stderr, “the heap is full.\n”);
 exit(1);
 }
 i = ++(*n);
 while ((i!=1)&&(item.key>heap[i/2].key))
 {

heap[i] = heap[i/2];
 i /= 2;
 }
 heap[i]= item;
}

Program 5.11: Insertion into a Max Heap

DATA STRUCTURES WITH C

Everyone who enters your life comes to you at precisely the time that you most need to learn the lesson they've come

 to teach.

 41

DELETION FROM A MAX HEAP

• When an element is to be deleted from a max heap, it is taken from the root of the heap (Figure 5.27

& Program 5.12).

element delete_max_heap(int *n)
{
 int parent, child;
 element item, temp;
 if (HEAP_EMPTY(*n))
 {
 fprintf(stderr, “The heap is empty\n”);
 exit(1);
 }
 /* save value of the element with the highest key */
 item = heap[1];
 /* use last element in heap to adjust heap */
 temp = heap[(*n)--];
 parent = 1;
 child = 2;

while (child <= *n)
{

 /* find the larger child of the current parent */
 if ((child < *n) && (heap[child].key<heap[child+1].key))
 child++;
 if (temp.key >= heap[child].key)
 break;
 /* move to the next lower level */
 heap[parent] = heap[child];
 child *= 2;
 }
 heap[parent] = temp;
 return item;
}

Program 5.12: Deletion from a Max Heap

DATA STRUCTURES WITH C

The wise man always does at once what the fool does at finally.

 51

UNIT 6: TREES (CONT.)

BINARY SEARCH TREE(BST)

• This is a tree that satisfies the following properties:

1) Each node has exactly one key and the keys in the tree are distinct (Figure 5.8).

2) The keys in the left subtree are smaller than the key in the root.

3) The keys in the right subtree are larger than the key in the root.

4) The left and right subtrees are also binary search trees.

SEARCHING A BINARY SEARCH TREE

• Assume that we have to search for a node whose key value is k. The search begins at the

root(Program 5.13)

1) If the root is NULL, then the tree contains no nodes and hence the search is unsuccessful.

2) If the key value k matches with the root's data then search terminates successfully.

3) If the key value is less than the root's data, then we should search in the left subtree.

4) If the key value is greater than the root's data, then we should search in the right subtree.

• Analysis: If h is the height of the binary search tree, then the search operation can be performed in

O(h) time.

tree_pointer search(tree_pointer root, int key)
{

/* return a pointer to the node that contains key. If there is no such
node, return NULL */
if (!root)
 return NULL;
if (key == root->data)
 return root;
if (key < root->data)
 return search(root->left_child,key);
else
 search(root->right_child,key);

}

Program 5.13: Recursive searching a Binary Search Tree

tree_pointer search2(tree_pointer tree, int key)
{
 while (tree)
 {
 if (key == tree->data)
 return tree;
 if (key < tree->data)
 tree = tree->left_child;
 else
 tree = tree->right_child;
 }
 return NULL;
}

Program 5.14: Iterative searching a Binary Search Tree

DATA STRUCTURES WITH C

Behind extraordinary achievement, you will always discover extraordinary effort.

 52

INSERTING INTO A BINARY SEARCH TREE

1) We must first verify if the tree already contains the node with the same data (Figure 5.29 &

Program 5.15).

2) If the search is successful, then the new node cannot be inserted into the binary search tree.

3) If the search is unsuccessful, then we can insert the new node at that point where the search

terminated.

void insert_node(tree_pointer *node, int num)
{
 tree_pointer ptr,
 temp = modified_search(*node, num);
 if (temp || !(*node))
 {
 ptr = (tree_pointer) malloc(sizeof(node));
 if (IS_FULL(ptr))
 {
 fprintf(stderr, “The memory is full\n”);
 exit(1);
 }
 ptr->data = num;
 ptr->left_child = ptr->right_child = NULL;
 if (*node)
 if (num<temp->data)
 temp->left_child=ptr;
 else
 temp->right_child = ptr;
 else

 *node = ptr;
 }
}

Program 5.15: Insertion into a Binary Search Tree

DELETION FROM A BINARY SEARCH TREE

1) Deletion of a leaf: To delete 35 from the tree of figure 5.29b, the left-child field of its parent is set

to NULL.

2) Deletion of a non-leaf that has only one child: The node containing the dictionary pair to be deleted

is freed, and its single-child takes the place of the freed node. So, to delete the 5 from the tree in

figure 5.29a, we simply change the pointer from the parent node to the single-child node.

3) The pair to be deleted is in a non-leaf node that has two children: The pair to be deleted is replaced

by either the largest pair in its left subtree or the smallest one in its right subtree. For instance, if we

wish to delete the pair with key 30 from the tree in figure 5.29b, then we replace it by key 5 as shown

in figure 5.30b.

DATA STRUCTURES WITH C

Give up the drop. Become the ocean.

 53

JOINING BINARY TREE

• There are two types of join operation on a binary search tree:

 1) threeWayJoin(small,mid,big): We simply create a new node and set its data

field to mid, its left-child pointer to small and its right-child pointer to big.

 2) twoWayJoin(small,big):

i) If small is empty, then the result is big.

ii) If big is empty, then the result is small.

iii) If both are non-empty, then we have to first delete from 'small' the pair mid with the

largest key.After this, a 3-way join of small, mid and big must be performed.

SPLITTING BINARY TREE

• Splitting a binary search tree will produce three trees: small, mid and big.

1) If key is equal to root->data, then root->llink is the small, root->data is mid & root->rlink is big.

2) If key is lesser than the root->data, then the root's along with its right subtree would be in the big.

3) if key is greater than root->data, then the root’s along with its left subtree would be in the small.

SELECTION TREE

• This is also called as a tournament tree. This is such a tree data structure using which the winner (or

loser) of a knock out tournament can be selected.

• There are two types of selection trees namely: winner tree and loser tree.

WINNER TREE

• This is a complete binary tree in which each node represents the smaller of its two children. Thus, the

root node represents the smallest node in the tree (Figure 5.31 & 32).

• The construction of the winner tree may be compared to the playing of a tournament.

• The winner is a record with the smaller key.

• Each non-leaf node represents winner of a tournament, and root node represents overall winner (or

smaller key).

LOSER TREES

• This is a selection tree in which each non-leaf node retains a pointer to the loser (Fig 5.33).

DATA STRUCTURES WITH C

Nothing fails like success.

 54

FORESTS

• This is a set of n>=0 disjoint trees (Figure 5.34).

TRANSFORMING A FOREST INTO A BINARY TREE

• If T1, T2. . . .Tn is a forest of trees, then the binary tree corresponding to this forest, denoted by

B(T1,T2. Tn),

1) is empty if n=0

2) has root equal to root(T1);has left subtree equal to B(T11,T12.T1m)

3) has right subtree B(T2. Tn)

where T11,T12.T1m are the subtrees of root(T1).

FOREST TRAVERSALS

• There are 3 forest traversal techniques namely: preorder, inorder and postorder traversal.

• Preorder traversal of forest F can be recursively defined as follows

1) If F is empty then return.

2) Visit the root of the first tree of F.

3) Traverse the subtrees of the first tree in forest preorder.

4) Traverse the remaining trees of F in forest preorder.

• Inorder traversal of forest F can be recursively defined as follows

1) If F is empty then return.

2) Traverse the subtrees of the first tree in forest inorder.

3) Visit the root of the first tree of F.

4) Traverse the remaining trees of F in forest inorder.

• Postorder traversal of forest F can be recursively defined as follows

1) If F is empty then return.

2) Traverse the subtrees of the first tree in forest postorder.

3) Traverse the remaining trees of F in forest postorder.

4) Visit the root of the first tree of F.

DATA STRUCTURES WITH C

Giving with the intention of receiving really isn't giving, it's trading.

 55

REPRESENTATION OF DISJOINT SETS

• A set is a collection of elements.

• Disjoint sets are such sets in which common elements are not present.

• Consider the 3 sets,

S1={0,6,7,8} S2={1,4,9} S3={2,3,5}

• The above three sets are disjoint since none of the elements are common between the sets.

• A set can be represented in two forms:

1) Tree representation (linked list representation)

2) Array representation

• The 3 sets S1, S2 and S3 can be represented in the form of a tree as shown below

• The same 3 sets S1, S2 and S3 can be represented in the form of array as shown below

DATA STRUCTURES WITH C

Reading is one of the best disciplines to stay on your game & at your highest.

 56

OPERATIONS THAT CAN BE PERFORMED ON A SET

1) Disjoint set union: If Si and Sj are two disjoint sets, then their union Si U Sj={all elements, x such

that x is in Si or Sj}.

 If S1={0,6,7,8} S2={1,4,9} then S1U S2={0,6,7,8,1,4,9}

2) Find(i):Find the set containing the element i. For example, 3 is in set S3 and 8 in set S1.
int find1(int i)
{
 for (; parent[i]>=0; i=parent[i]);
 return i;
}

void union1(int i, int j)
{
 parent[i]= j;
}

Program 5.16: iterative searching a Binary Search Tree

WEIGTING RULE FOR UNION(I,J)

• If the number of nodes in tree i is less than the number in tree j then make j the parent of i;

otherwise make i the parent of j (Figure 5.41 & Program 5.17).

void union2(int i, int j)
{
 int temp = parent[i]+parent[j];
 if (parent[i]>parent[j])
 {
 parent[i]=j;
 parent[j]=temp;

 }
 else
 {
 parent[j]=i;
 parent[i]=temp;
 }
}

Program 5.17: Union Operation with weighted rule

DATA STRUCTURES WITH C

 Small choices lead to giant consequences-- over time. There's no such thing as an unimportant day.

 57

COUNTING BINARY TREES

STACK PERMUTATIONS

• Suppose we have the preorder sequence A B C D E F G H and the inorder sequence B C A E D G H F I

of the same binary tree (Figure 5.47 & 48).

• The number of distinct binary trees is equal to the number of distinct inorder permutations obtainable

from binary trees having the preorder permutation 1, 2 n. (Figure 5.49).

• If we start with the numbers 1,2 and 3,then the possible permutations obtainable by a stack are

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,2,1)

DATA STRUCTURES WITH C

Greatness arrives for those who are never satisfied with what is, no matter how nice it looks.

 58

NUMBER OF DISTINCT BINARY TREES

DATA STRUCTURES WITH C

Life is a skill. And like any other skill, once you know the ground rules & make the time to practice, you can get better.

 59

UNIT 6(CONT.): GRAPHS

GRAPH

• A graph G consists of 2 sets, V and E.

 V is a finite, on empty set of vertices.

 E is a set of pairs of vertices, these pairs are called edges.

V(G) and E(G) represents the set of vertices and edges respectively of graph G (Fig 6.2).

• In an undirected graph, the pair of vertices representing any edge is unordered. Thus, the pairs

(u,v) and (v,u) represent the same edge.

• In a directed graph, each edge is represented by a directed pair <u,v>; u is the tail and v is the

head of the edge. Therefore, <u,v> and <v,u> represent two different edges.

Figure 6.2: Three sample graphs

Following are the restrictions on graphs

1) A graph may not have an edge from a vertex v back to itself. Such edges are known as self

loops (Figure 6.3).

2) A graph may not have multiple occurrences of the same edge. If we remove this restriction,

we obtain a data object referred to as multigraph.

Figure 6.3: Examples of graph like structures

• Maximum number of edges in any n-vertex, undirected graph is n(n-1)/2.

Maximum number of edges in any n-vertex, directed graph is n(n-1).

DATA STRUCTURES WITH C

You can't win a game that you don't even play.

 60

TERMINOLOGIES USED IN A GRAPH

• Subgraph of G is a graph G' such that V(G')  V(G) and E(G')  E(G) (Fig 6.4).

Figure 6.4:Some subgraphs

• A path from vertex u to vertex v in graph G is a sequence of vertices u,i1,i2 . . . ik, v such that

(u,i1),(i1,i2)(ik, v) are edges in E(G).

• A simple path is a path in which all vertices except possibly the first and last are distinct.

• A cycle is a simple path in which the first and last vertices are the same.

• A undirected graph is said to be connected iff

 for every pair of distinct vertices u & v in V(G) there is a path from u to v in G.

• A connected component H of an undirected graph is a maximal connected subgraph (Figure 6.5).

Figure 6.5:A graph with two connected components

• A tree is a connected acyclic(i.e. has no cycles) graph.

• A directed graph G is said to be strongly connected iff for every pair of distinct vertices u and v in

V(G),there is a directed path from u to v and also from v to u (Figure 6.6).

Figure 6.6:Strongly connected components of G3

• The degree of a vertex is the number of edges incident to that vertex. (Degree of vertex 0 is 3)

• In a directed graph G, in-degree of a vertex v defined as the number of edges for which v is the

head. The out-degree is defined as the number of edges for which v is the tail. (Vertex 1 of G3 has

in-degree 1, out-degree 2 and degree 3).

GRAPH ABSTRACT DATA TYPE
structure Graph is
 objects: a nonempty set of vertices and a set of undirected edges, where each edge is a
pair of vertices
 functions: for all graph  Graph, v, v1 and v2  Vertices

 Graph Create()::=return an empty graph
 Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge.
 Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between v1 and v2
 Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it
 are removed
 Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is
 removed
 Boolean IsEmpty(graph)::= if (graph==empty graph)
 return TRUE
 else
 return FALSE
 List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

ADT 6.1:Abstract data type Graph

DATA STRUCTURES WITH C

You can expect only that which you inspect.

 61

GRAPH REPRESENTATIONS

• Three commonly used representations are:

1) Adjacency matrices,

2) Adjacency lists and

3) Adjacency multilists

Adjacency Matrix

• Let G=(V,E) be a graph with n vertices, n>=1.

• The adjacency matrix of G is a two-dimensional n*n array(say a) with the property that a[i][j]=1 iff

 the edge (i,j) is in E(G). a[i][j]=0 if there is no such edge in G (Figure 6.7).

• The space needed to represent a graph using its adjacency matrix is n2 bits.

• About half this space can be saved in the case of undirected graphs by storing only the upper or

lower triangle of the matrix.

Figure 6.7 Adjacency matrices

Adjacency Lists

• The n rows of the adjacency matrix are represented as n chains.

• There is one chain for each vertex in G.

• The data field of a chain node stores the index of an adjacent vertex (Figure 6.8).

• For an undirected graph with n vertices and e edges, this representation requires an array of size n

and 2e chain nodes.

Figure 6.8 adjacency lists

DATA STRUCTURES WITH C

Failure reawakens us to who we really are & to what we truly want, & it shakes us out of our complacency.

 62

Adjacency Multilists

• Each edge (u,v) is represented by two entries, one on the list for u and the other on the list for v.

• The new node structure is

Figure 6.12:Adjacency multilists for G1

