

OPERATING SYSTEMS

Subject Code: 10CS53 I.A. Marks : 25
Hours/Week : 04 Exam Hours: 03
Total Hours : 52 Exam Marks: 100

PART – A

UNIT – 1 6 Hours
Introduction to Operating Systems, System structures: What operating systems do; Computer System
organization; Computer System architecture; Operating System structure; Operating System operations; Process
management; Memory management; Storage management; Protection and security; Distributed system; Special-
purpose systems; Computing environments.Operating System Services; User - Operating System interface; System
calls; Types of system calls; System programs; Operating System design and implementation; Operating System
structure; Virtual machines; Operating System generation; System boot.

UNIT – 2 7 Hours
Process Management: Process concept; Process scheduling; Operations on processes; Inter-process
communication. Multi-Threaded Programming: Overview; Multithreading models; Thread Libraries; Threading
issues. Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms; Multiple-Processor
scheduling; Thread scheduling.

UNIT – 3 7 Hours
Process Synchronization : Synchronization: The Critical section problem; Peterson’s solution; Synchronization

hardware; Semaphores; Classical problems of synchronization; Monitors.

UNIT – 4 6 Hours
Deadlocks: Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks; Deadlock
prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock.

PART – B

UNIT – 5 7 Hours
Memory Management: Memory Management Strategies: Background; Swapping; Contiguous memory allocation;
Paging; Structure of page table; Segmentation. Virtual Memory Management: Background; Demand paging; Copy-
on-write; Page replacement; Allocation of frames; Thrashing.

UNIT – 6 7 Hours
File System, Implementation of File System: File System: File concept; Access methods; Directory structure; File
system mounting; File sharing; Protection. Implementing File System: File system structure; File system
implementation; Directory implementation; Allocation methods; Free space management

UNIT – 7 6 Hours
Secondary Storage Structures, Protection : Mass storage structures; Disk structure; Disk attachment; Disk
scheduling; Disk management; Swap space management. Protection: Goals of protection, Principles of protection,
Domain of protection, Access matrix, Implementation of access matrix, Access control, Revocation of access rights,
Capability-Based systems.

UNIT – 8 6 Hours
Case Study: The Linux Operating System: Linux history; Design principles; Kernel modules; Process
management; Scheduling; Memory management; File systems, Input and output; Inter-process communication.

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 7th edition, Wiley
India, 2006.
(Chapters: 1, 2, 3.1 to 3.4 , 4.1 to 4.4, 5.1 to 5.5, 6.1 to 6.7, 7, 8.1 to 8.6, 9.1 to 9.6, 10, 11.1 to 11.5, 12.1
to 12.6, 17.1 to 17.8, 21.1 to 21.9)

TABLE OF CONTENTS

UNIT 1: INTRODUCTION 1-17

 SYSTEM STRUCTURES 18-33

UNIT 2: PROCESS CONCEPTS 34-43

 MULTITHREADED PROGRAMMING 44-49

 PROCESS SCHEDULING 50-61

UNIT 3: PROCESS SYNCHRONIZATION 62-78

UNIT 5: MEMORY MANAGEMENT 79-94

 VIRTUAL MEMORY 95-107

UNIT 6: FILE SYSTEMS 108-123

 IMPLEMENTING FILE SYSTEM 124-134

OPERATING SYSTEMS

In order to succeed you must fail, so you know what to do better the next time.

1

UNIT 1: INTRODUCTION

Operating System

• An OS is a program that acts as an intermediary between

 → computer-user and

 → computer-hardware.

• It also provides a basis for application-programs

• Goals of OS:
  To execute programs.

  To make solving user-problems easier.

  To make the computer convenient to use.

• The OS (also called kernel) is the one program running at all times on the computer.

• Different types of OS:
  Mainframe OS is designed to optimize utilization of hardware.

  Personal computer (PC) OS supports complex game, business application.

  Handheld computer OS is designed to provide an environment in which a user can easily

 interface with the computer to execute programs.

What Operating Systems do?

• Four components of a computer (Figure 1.1):

 1. Hardware

 2. OS

 3. Application programs and

 4. Users

Figure 1.1 Abstract view of the components of a computer system

• Hardware provides basic computing-resources:
 → CPU

 → memory and

 → I/O devices.

• Application-program defines how the resources are used to solve computing-problems of the users.

 Ex: word processors, spread sheets, compilers.

• The OS controls & co-ordinates the use of hardware among various application-program for various

users.

• Two views of OS:

 1) User and 2) System.

OPERATING SYSTEMS

Tomorrow belongs to those who have vision today!

2

User View

• The user's view of the computer depends on the interface being used:

1 Most users use a PC consisting of a monitor, keyboard and system-unit.
 The OS is designed mostly for ease of use.

 Some attention is paid to performance.

 No attention is paid to resource utilization.
 The OS is optimized for the single-user experience.

2. Some users use a terminal connected to a mainframe or (a minicomputer).
 The OS is designed

 → to maximize resource utilization.

 → to assure that no individual user takes more than her fair share.

3. Some users use a workstation connected to network.
 The users have dedicated resources such as networking and servers.

 The OS is designed to compromise between

 → individual usability and

 → resource utilization.

4. Some users use a handheld computer.
 The OS is designed mostly for individual usability.

 Performance per unit of battery life is a very important factor.

System View

1. An OS as a resource allocator
 Resources used to solve a computing-problem:

 → CPU time

 → memory-space

 → file-storage space and

 → I/0 devices.

 The OS manages and allocates the above resources to programs and the users.

2. An OS is a control program
 The OS is needed to control:

 → operations of I/0 devices and

 → execution of user-programs to prevent errors.

OPERATING SYSTEMS

As a rule, he or she that has the most information will have the greatest success in life.

3

Computer System Organization

• A computer consists of

 → one or more CPUs and

 → no. of device-controllers (Figure 1.2).

• Controller is in charge of a specific type of device (for ex: audio devices).

• CPU and controllers can execute concurrently.

• A memory-controller is used to synchronize access to the shared-memory.

• Following events occur for a computer to start running:

1. Bootstrap program is an initial program that runs when computer is powered-up.

2. Bootstrap program
 → initializes all the system from registers to memory-contents and

 → loads OS into memory.

3. Then, OS
 → starts executing the first process (such as "init") and

 → waits for some event to occur.

4. The occurrence of an event is signaled by an interrupt from either the hardware or the

software (Figure 1.3).

i) Hardware may trigger an interrupt by sending a signal to the CPU.

ii) Software may trigger an interrupt by executing a system-call.

5. When CPU is interrupted, the CPU

 → stops current computation and

 → transfers control to ISR (interrupt service routine).

6. Finally, the ISR executes; on completion, the CPU resumes the interrupted computation.

Common Functions of Interrupts

• Interrupt transfers control to the ISR generally, through the interrupt-vector, which contains the

addresses of all the service routines.

• Interrupt architecture must save the address of the interrupted-instruction.

• Incoming interrupts are disabled while another interrupt is being processed to prevent a lost

interrupt.

• A trap is a software-generated interrupt caused either by an error or a user request.

• A modern OS is interrupt-driven.

Figure 1.2 A modern computer system

Figure 1.3 Interrupt time line for a single process doing output

OPERATING SYSTEMS

The greatest discovery is that a human being can alter his life by altering his attitudes of his mind.

4

Storage Structure

• Programs must be in main-memory (also called RAM) to be executed.

• Interaction with memory is done through a series of load or store instructions.

1. Load Instruction
 Moves a word from main-memory to an internal register within the CPU.

2. Store Instruction

 Moves the content of a register to main-memory.

• Also, the CPU automatically loads instructions from main-memory for execution.

• Ideally, we want the programs & data to reside in main-memory permanently. This is not possible for

2 reasons:

1. Main-memory is small.

2. Main-memory is volatile i.e. it loses its contents when powered-off.

• Most computers provide secondary-storage as an extension of main-memory.

 For ex: magnetic disk.

• Main requirement:

 The secondary-storage must hold large amount of data permanently.

• The wide range of storage-systems can be organized in a hierarchy (Figure 1.4).

• The higher levels are expensive, but they are fast.

 The lower levels are inexpensive, but they are slow.

Figure 1.4 Storage-device hierarchy

OPERATING SYSTEMS

The key to happiness is having dreams. The key to success is making your dreams come true.

5

I/O Structure

• A computer consists of CPUs and multiple device controllers (Figure 1.5).

• A controller is in charge of a specific type of device.

• The controller maintains
 → some local buffer and

 → set of special-purpose registers.

• Typically, OS has a device-driver for each controller.

• Interrupt-driven I/O:

 1. Driver loads the appropriate registers within the controller.

 2. Controller examines the contents of registers to determine what action to take.

 3. Controller transfers data from the device to its local buffer.

 4. Controller informs the driver via an interrupt that it has finished its operation.

 5. Driver then returns control to the OS.

• Problem: Interrupt-driven I/O produces high overhead when used for bulk data-transfer.

 Solution: Use DMA (direct memory access).

• In DMA, the controller transfers blocks of data from buffer-storage directly to main memory without

CPU intervention.

Figure 1.5 How a modern computer system works

OPERATING SYSTEMS

Success is a state of mind. If you want success, start thinking of yourself as a success!

6

Computer System Architecture

1. Single-Processor Systems

2. Multiprocessor Systems

3. Clustered Systems

Single Processor Systems

• The system has only one general-purpose CPU.

• The CPU is capable of executing a general-purpose instruction-set.

• These systems range from PDAs through mainframes.

• Almost all systems have following processors:

1. Special Purpose Processors
 Include disk, keyboard, and graphics controllers.

2. General Purpose Processors

 Include I/O processors.

• Special-purpose processors run a limited instruction set and do not run user-processes.

Multiprocessor Systems

• These systems have two or more processors which can share:
 → bus → clock → memory/peripheral devices

• Advantages:

1. Increased Throughput
 By increasing no. of processors, we expect to get more work done in less time.

2. Economy of Scale
 These systems are cheaper because they can share

 → peripherals → mass-storage → power-supply.

 If many programs operate on same data, they will be stored on one disk & all processors can

share them.

3. Increased Reliability

 The failure of one processor will not halt the system.

• Two types of multiple-processor systems:

1) Asymmetric multiprocessing(AMP) and 2) Symmetric multiprocessing(SMP)

Asymmetric Multiprocessing

• This uses master-slave relationship (Figure 1.6).

• Each processor is assigned a specific task.

• A master-processor controls the system.

 The other processors look to the master for instruction.

• The master-processor schedules and allocates work to the slave-processors.

Symmetric Multiprocessing

• Each processor runs an identical copy of OS.

• All processors are peers; no master-slave relationship exists between processors.

• Advantages:

1. Many processes can run simultaneously.

2. Processes and resources are shared dynamically among the various processors.

• Disadvantage:

1. Since CPUs are separate, one CPU may be sitting idle while another CPU is overloaded. This

results in inefficiencies.

Figure 1.6 Symmetric multiprocessing architecture

OPERATING SYSTEMS

It is not enough to have a good mind; the important thing is to use it well.

7

Clustered Systems

• These systems consist of two or more systems coupled together (Figure 1.7).

• These systems share storage & closely linked via LAN.

• Advantage:

 1. Used to provide high-availability service.

• High-availability is obtained by adding a level of redundancy in the system.

• Working procedure:
 A cluster-software runs on the cluster-nodes.

 Each node can monitor one or more other nodes (over the LAN).

 If the monitored-node fails, the monitoring-node can

 → take ownership of failed-node’s storage and

 → restart the applications running on the failed-node.

 The users and clients of the applications see only a brief interruption of service.

• Two types are:

 1) Asymmetric and 2) Symmetric

Asymmetric Clustering

• One node is in hot-standby mode while the other nodes are running the applications.

• The hot-standby node does nothing but monitor the active-server.

• If the server fails, the hot-standby node becomes the active server.

Symmetric Clustering

• Two or more nodes are running applications, and are monitoring each other.

• Advantage:

 1. This mode is more efficient, as it uses all of the available hardware.

• It does require that more than one application be available to run.

Figure 1.7 General structure of a clustered system

OPERATING SYSTEMS

You can't hit a target you cannot see and you cannot see a target you do not have.

8

Operating System Structure

1. Batch systems

2. Multiprogrammed systems

3. Time-Sharing systems

Batch Systems

• Early computers were physically enormous machines run from a console.

• The common input devices were card readers and tape drives.

• The common output devices were line printers, tape drives, and card punches.

• The user

 → prepared a job which consisted of the program, the data, and control information

 → submitted the job to the computer-operator.

• The job was usually in the form of punch cards.

• At some later time (after minutes, hours, or days), the output appeared.

• To speed up processing, operators batched together jobs with similar needs and ran them through

the computer as a group.

• Disadvantage:

 1. The CPU is often idle, because the speeds of the mechanical I/O devices.

Multiprogrammed Systems

• Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has one to

execute.

• The idea is as follows:

 1. OS keeps several jobs in memory simultaneously (Figure 1.8).

 2. OS picks and begins to execute one of the jobs in the memory. Eventually, the job may have

 to wait for some task, such as an I/O operation, to complete.

 3. OS simply switches to, and executes, another job.

 4. When that job needs to wait, the CPU is switched to another job, and so on.

 5. As long as at least one job needs to execute, the CPU is never idle.

• If several jobs are ready to be brought into memory, and if there is not enough room for all of them,

then the system must choose among them. Making this decision is job scheduling.

• If several jobs are ready to run at the same time, the system must choose among them. Making this

decision is CPU scheduling.

Figure 1.8 Memory layout for a multiprogramming system

OPERATING SYSTEMS

Success is willing to do what the average person is not willing to do.

9

Time Sharing Systems

• Time sharing (or multitasking) is a logical extension of multiprogramming.

• The CPU executes multiple jobs by switching between them.

• Switching between jobs occur so frequently that the users can interact with each program while it is

running.

• Many users are allowed to share the computer simultaneously.

• CPU scheduling and multiprogramming are used to provide each user with a small portion of a time-

shared computer.

• To obtain a good response time, jobs may have to be swapped in and out of main memory to the

disk (called as backing store).

• Virtual memory is a technique that allows the execution of a job that may not be completely in

memory.

• Advantage of virtual-memory:

 1. Programs can be larger than physical memory.

• Main requirements:
  The system must provide a file-system.

  The system must provide disk-management.

  The system must provide CPU-scheduling to support concurrent execution.

  The system must provide job-synchronization to ensure orderly execution.

OPERATING SYSTEMS

Always look at what you have left and what is left to come. Never look at what you have lost.

10

Operating System Operations

• Modern OS is interrupt driven.

• Events are always signaled by the occurrence of an interrupt or a trap.

• A trap is a software generated interrupt caused either by
 → error (for example division by zero) or

 → request from a user-program that an OS service be performed.

• For each type of interrupt, separate segments of code in the OS determine what action should be

taken.

• ISR (interrupt service routine) is provided that is responsible for dealing with the interrupt.

Dual Mode Operation

• Problem: We must be able to differentiate between the execution of

 → OS code and

 → user-defined code.

 Solution: Most computers provide hardware-support.

• We have two modes of operation (Figure 1.9):

 1. User mode and

 2. Kernel mode

• A mode bit is a bit added to the hardware of the computer to indicate the current mode:

 i.e. kernel (0) or user (1)

Figure 1.9 Transition from user to kernel mode

• Working principle:

1. At system boot time, the hardware starts in kernel-mode.

2. The OS is then loaded and starts user applications in user-mode.

3. Whenever a trap or interrupt occurs, the hardware switches from user-mode to kernel-mode

(that is, changes the state of the mode bit to 0).

4. The system always switches to user-mode (by setting the mode bit to 1) before passing

control to a user-program.

• Dual mode protects
 → OS from errant users and

 → errant users from one another.

• Privileged instruction is executed only in kernel-mode.

• If an attempt is made to execute a privileged instruction in user-mode, the hardware treats it as

illegal and traps it to the OS.

• A system calls are called by user-program to ask the OS to perform the tasks on behalf of the user

program.

OPERATING SYSTEMS

Keep on trying; each failure is one step closer to a success.

11

Timer

• Problem: We cannot allow a user-program to get stuck in an infinite loop and never return control to

the OS.

 Solution: We can use a timer.

• A timer can be set to interrupt the computer after a specific period.

• The period may be

 → fixed (for ex: 1/60 second) or

 → variable (for ex: from 1ns to 1ms).

• A variable timer is implemented by
 → a fixed-rate clock and

 → a counter.

• Working procedure:

1. The OS sets the counter.

2. Every time the clock ticks, the counter is decremented.

3. When the counter reaches 0, an interrupt occurs.

• The instructions that modify the content of the timer are privileged instructions.

OPERATING SYSTEMS

Success is not final and failure is not fatal. It is the courage to continue that counts.

12

Process Management

• The OS is responsible for the following activities:

1. Creating and deleting both user and system processes

2. Suspending and resuming processes

3. Providing mechanisms for process synchronization

4. Providing mechanisms for process communication

5. Providing mechanisms for deadlock handling

• A process needs following resources to do a task:
 → CPU

 → memory and

 → files.

• The resources are allocated to process
 → when the process is created or

→ while the process is running.

• When the process terminates, the OS reclaims all the reusable resources.

• A program by itself is not a process;

 1. A program is a passive entity (such as the contents of a file stored on disk).

 2. A process is an active entity.

• Two types of process:

1. Single-threaded process has one PC(program counter) which specifies location of the next

instruction to be executed.

2. Multi-threaded process has one PC per thread which specifies location of next instruction

to execute in each thread

Memory Management

• The OS is responsible for the following activities:

1. Keeping track of which parts of memory are currently being used and by whom

2. Deciding which processes are to be loaded into memory when memory space becomes

available

3. Allocating and de-allocating memory space as needed.

• Main memory is the array of bytes ranging from hundreds to billions.

• Each byte has its own address.

• The CPU
 → reads instructions from main memory during the instruction-fetch cycle.

 → reads/writes data from/to main-memory during the data-fetch cycle.

• To execute a program:

 1. The program will be
 → loaded into memory and

 → mapped to absolute addresses.

 2. Then, program accesses instructions & data from memory by generating absolute addresses.

 3. Finally, when program terminates, its memory-space is freed.

• To improve CPU utilization, keep several programs will be kept in memory

• Selection of a memory-management scheme depends on hardware-design of the system.

OPERATING SYSTEMS

I don't dream at night, I dream all day; I dream for a living.

13

Storage Management

1. File-System Management

2. Mass-Storage Management

3. Caching

File System Management

• The OS is responsible for following activities:

1. Creating and deleting files.

2. Creating and deleting directories.

3. Supporting primitives for manipulating files & directories.

4. Mapping files onto secondary storage.

5. Backing up files on stable (non-volatile) storage media.

• Computer stores information on different types of physical media.

 For ex: magnetic disk, optical disk.

• Each medium is controlled by a device (e.g. disk drive).

• The OS
 → maps files onto physical media and

 → accesses the files via the storage devices

• File is a logical collection of related information.

• File consists of both program & data.

• Data files may be numeric, alphabets or binary.

• When multiple users have access to files, access control (read, write) must be specified.

Mass Storage Management

• The OS is responsible for following activities:

1. Free-space management

2. Storage allocation and

3. Disk scheduling.

• Usually, disks used to store
 → data that does not fit in main memory or

 → data that must be kept for a “long” period of time.

• Most programs are stored on disk until loaded into memory.

• The programs include
 → compilers

 → word processors and

 → editors.

• The programs use the disk as both the source and destination of their processing.

• Entire speed of computer operation depends on disk and its algorithms.

Caching

• Caching is an important principle of computer systems.

• Information is normally kept in some storage system (such as main memory).

• As it is used, it is copied into a faster storage system called as the cache on a temporary basis.

• When we need a particular piece of information:

 1. We first check whether the information is in the cache.

2. If information is in cache, we use the information directly from the cache.

3. If information is not in cache, we use the information from the source, putting a copy in the

cache under the assumption that we will need it again soon.

• In addition, internal programmable registers, such as index registers, provide high-speed cache for

main memory.

• The compiler implements the register-allocation and register-replacement algorithms to decide which

information to keep in registers and which to keep in main memory.

• Most systems have an instruction cache to hold the instructions expected to be executed next.

• Most systems have one or more high-speed data caches in the memory hierarchy

• Because caches have limited size, cache management is an important design problem

 Careful selection of cache size & of a replacement policy can result in greatly increased performance

OPERATING SYSTEMS

The real secret to success is enthusiasm.

14

I/O Systems

• The OS must hide peculiarities of hardware devices from users.

• In UNIX, the peculiarities of I/O devices are hidden from the bulk of the OS itself by the I/O

subsystem.

• The I/O subsystem consists of

 1. A memory-management component that includes buffering, caching, and spooling.

2. A general device-driver interface.

3. Drivers for specific hardware devices.

• Only the device driver knows the peculiarities of the specific device to which it is assigned.

Protection and Security

• Protection is a mechanism for controlling access of processes or users to resources defined by OS.

• This mechanism must provide

 → means for specification of the controls to be imposed and

 → means for enforcement.

• Protection can improve reliability by detecting latent errors at the interfaces between subsystems.

• Security means defense of the system against internal and external attacks.

• The attacks include
 → viruses and worms

 → DOS(denial-of-service)

 → identity theft.

• Protection and security require the system to be able to distinguish among all its users.

1. User identities (user IDs) include name and associated number, one per user.

 User IDs are associated with all files (or processes) of that user to determine access control.

2. Group identifier (group ID) allows set of users to be defined and controls managed, then also

associated with each process, file.

Distributed System

• This is a collection of physically separate, possibly heterogeneous computer-systems.

• The computer-systems are networked to provide the users with access to the various resources.

• Access to a shared resource increases
 → computation speed

 → functionality

 → data availability and

 → reliability

• A network is a communication path between two or more systems.

• Networks vary by the

 → protocols used

 → distances between nodes and

 → transport media.

• Common network protocol are
→ TCP/IP

→ ATM.

• Networks are characterized based on the distances between their nodes.
→ A local-area network (LAN) connects computers within a building.

→ A wide-area network (WAN) usually links buildings, cities, or countries.

→ A metropolitan-area network (MAN) could link buildings within a city.

• The media to carry networks are equally varied. They include
 → copper wires,

 → fiber strands, and

 → wireless transmissions.

OPERATING SYSTEMS

A great pleasure in life is doing what people say you cannot do.

15

Special Purpose Systems

1. Real-Time Embedded Systems

2. Multimedia Systems

3. Handheld Systems

Real-Time Embedded Systems

• Embedded computers are the most prevalent form of computers in existence.

• These devices are found everywhere, from car engines and manufacturing robots to VCRs and

microwave ovens.

• They tend to have very specific tasks.

• The systems they run on are usually primitive, and so the operating systems provide limited

features.

• Usually, they prefer to spend their time monitoring & managing hardware devices such as

 → automobile engines and

 → robotic arms.

• Embedded systems almost always run real-time operating systems.

• A real-time system is used when rigid time requirements have been placed on the operation of a

processor.

Multimedia Systems

• Multimedia data consist of audio and video files as well as conventional files.

• These data differ from conventional data in that multimedia data must be delivered(streamed)

according to certain time restrictions.

• Multimedia describes a wide range of applications. These include
 → audio files such as MP3

 → DVD movies

 → video conferencing

 → live webcasts of speeches

Handheld Systems

• Handheld systems include

 → PDAs and

 → cellular telephones.

• Main challenge faced by developers of handheld systems: Limited size of devices.

• Because of small size, most handheld devices have a
 → small amount of memory,

 → slow processors, and

 → small display screens.

OPERATING SYSTEMS

You are today where your thoughts have brought you; you will be tomorrow where your thoughts take you.

16

Computing Environments

1. Traditional Computing

2. Client-Server Computing

3. Peer-to-Peer Computing

4. Web-Based Computing

Traditional Computing

• Used in office environment:
  PCs connected to a network, with servers providing file and print services.

• Used in home networks:
  At home, most users had a single computer with a slow modem.

  Some homes have firewalls to protect their networks from security breaches.

• Web technologies are stretching the boundaries of traditional computing.
  Companies establish portals, which provide web accessibility to their internal servers.

  Network computers are terminals that understand web computing.

  Handheld PDAs can connect to wireless networks to use company's web portal.

• Systems were either batch or interactive.

 1. Batch system processed jobs in bulk, with predetermined input.

 2. Interactive systems waited for input from users.

Client-Server Computing

• Servers can be broadly categorized as (Figure 1.10):

 1. Compute servers and 2. File servers

Compute-server system provides an interface to which a client can send a request to perform an

action (for example, read data).
  In response, the server executes the action and sends back results to the client.

File-server system provides a file-system interface where clients can create, read, and delete files.
  For example: web server that delivers files to clients running web browsers.

Figure 1.10 General structure of a client–server system.

OPERATING SYSTEMS

Whenever I hear it can't be done, I know I am close to success.

17

Peer-to-Peer Computing

• All nodes are considered peers, and each may act as either a client or a server(Figure 1.11).

• Advantage:

 1. In a client-server system, the server is a bottleneck;

 but in a peer-to-peer system, services can be provided by several nodes distributed

 throughout the network.

• A node must first join the network of peers.

• Determining what services are available is done in one of two general ways:

1. When a node joins a network, it registers its service with a centralized lookup service on the

network.

 Any node desiring a specific service first contacts this centralized lookup service to

determine which node provides the service.

2. A peer broadcasts a request for the service to all other nodes in the network. The node (or

nodes) providing that service responds to the peer.

Figure 1.11 Peer-to-peer system with no centralized service.

Web Based Computing

• This includes
 → PC

 → handheld PDA &

 → cell phones

• Load balancer is a new category of devices to manage web traffic among similar servers.

• In load balancing, network connection is distributed among a pool of similar servers.

• More devices becoming networked to allow web access

• Use of operating systems like Windows 95, client-side, have evolved into Linux and Windows XP,

which can be clients and servers

OPERATING SYSTEMS

Your talent is God's gift to you. What you do with it is your gift back to God.

18

UNIT 1(CONT.): SYSTEM STRUCTURES

Operating System Services

• An OS provides an environment for the execution of programs.

• It provides services to
 → programs and

 → users.

Figure 1.12 A view of OS services

• Common functions helpful to the user are (Figure 1.12):

1. User Interface
 Almost all OS have a user-interface (UI).

 Different interfaces are:

 i) CLI (Command line Interface)
  This uses

 → text commands and

 → method for entering the text commands.

ii) Batch interface
 Commands & directives to control those commands are entered into files, and those

files are executed.

iii) GUI (Graphical User Interface)
 The interface is a window-system with a pointing-device to

 → direct I/0

 → choose from menus and

 → make selections.

2. Program Execution
 The system must be able to

 → load a program into memory and

 → run the program.

 The program must be able to end its execution, either normally or abnormally.

3. I/O Operations

 The OS must provide a means to do I/O operations because users cannot control I/O devices

directly.
 For specific devices, special functions may be desired (ex: to blank CRT screen).

4. File-system Manipulation
 Programs need to

 → read & write files (or directories)

 → create & delete files

→ search for a given file and

 → allow or deny access to files.

OPERATING SYSTEMS

Never let your failures go to your heart or your successes go to your head.

19

5. Communications
 In some situations, one process needs to communicate with another process.

 Communications may be implemented via

 1. Shared memory or

 2. Message passing

 In message passing, packets of information are moved between processes by OS.

6. Error Detection
 Errors may occur in

 → CPU & memory-hardware (ex: power failure)

 → I/O devices (ex: lack of paper in the printer) and

 → user program (ex: arithmetic overflow)

 For each type of error, OS should take appropriate action to ensure correct & consistent

computing.

• Common functions for efficient operation of the system are:

1. Resource Allocation
 When multiple users are logged on the system at the same time, resources must be allocated

to each of them.

 The OS manages different types of resources.

 Some resources (say CPU cycles) may have special allocation code.

 Other resources (say I/O devices) may have general request & release code.

2. Accounting
 We want to keep track of

 → which users use how many resources and

 → which kinds of resources.

 This record keeping may be used for

 → accounting (so that users can be billed) or

 → gathering usage-statistics.

3. Protection

 When several separate processes execute concurrently, it should not be possible for one

process to interfere with the others or with the OS itself.
 Protection involves ensuring that all access to resources is controlled.

 Security starts with each user having authenticated to the system by means of a password.

OPERATING SYSTEMS

What counts is not necessarily the size of the dog in the fight, but the size of the fight in the dog.

20

User Operating System Interface

• Two ways that users interface with the OS:

1. Command Interpreter (Command-line interface)

2. Graphical User Interface (GUI)

Command Interpreter

• Main function:

 To get and execute the next user-specified command (Figure 1.13).

• The commands are used to manipulate files i.e. create, copy, print, execute, etc.

• Two general ways to implement:

1. Command interpreter itself contains code to execute command.

2. Commands are implemented through system programs. This is used by UNIX.

Graphical User Interfaces

• No entering of commands but the use of a mouse-based window and menu system (Figure 1.14).

• The mouse is used to move a pointer to the position of an icon that represents
 → file

 → program or

 → folder

• By clicking on the icon, the program is invoked.

Figure 1.13 The Bourne shell command interpreter in Solaris 10.

Figure 1.14 The iPad touchscreen

OPERATING SYSTEMS

To succeed you need to find something to hold onto, something to motivate you, and something to inspire you.

21

System Calls

• These provide an interface to the OS services.

• These are available as routines written in C and C++.

• The programmers design programs according to an API.

 (API=application programming interface).

• The API

 → defines a set of functions that are available to the programmer (Figure 1.15).

 → includes the parameters passed to functions and the return values.

• The functions that make up an API invoke the actual system-calls on behalf of the programmer.

• Benefits of API:

1. Program portability.

2. Actual system-calls are more detailed (and difficult) to work with than the API available to

the programmer.

• Three general methods are used to pass parameters to the OS:

1, via registers.

2. Using a table in memory & the address is passed as a parameter in a register (Figure 1.16).

3. The use of a stack is also possible where parameters are pushed onto a stack and popped off

the stack by the OS.

3. Using a stack where parameters are

 → pushed onto a stack and

 → popped off the stack.

Figure 1.15 Example of how system calls are used.

Figure 1.16 Passing of parameters as a table.

OPERATING SYSTEMS

Coming together is the beginning. Keeping together is progress. Working together is success.

22

OPERATING SYSTEMS

Losers visualize the penalties of failure; winners visualize the rewards of success.

23

Types of System Calls

1. Process control

2. File management

3. Device management

4. Information maintenance

5. Communications

Process Control

• System calls used:
 end, abort

 load, execute

 create process, terminate process

 get process attributes, set process attributes

 wait for time

 wait event, signal event

 allocate and free memory

• A running program needs to be able to halt its execution either normally (end) or abnormally

(abort).

• If program runs into a problem, error message may be generated and dumped into a file.

 This file can be examined by a debugger to determine the cause of the problem.

• The OS must transfer control to the next invoking command interpreter.
 Command interpreter then reads next command.

 In interactive system, the command interpreter simply continues with next command.

 In GUI system, a pop-up window will request action from user.

How to deal with new process?

• A process executing one program can load and execute another program.

• Where to return control when the loaded program terminates?

 The answer depends on the existing program:

1) If control returns to the existing program when the new program terminates, we must save

the memory image of the existing program. (Thus, we have effectively created a mechanism for

one program to call another program).

 2) If both programs continue concurrently, we created a new process to be multiprogrammed.

• We should be able to control the execution of a process. i.e. we should be able to determine and

reset the attributes of a process such as:
→ job's priority or

→ maximum execution time

• We may also want to terminate process that we created if we find that it
 → is incorrect or

 → is no longer needed.

• We may need to wait for processes to finish their execution.

 We may want to wait for a specific event to occur.

• The processes should then signal when that event has occurred.

OPERATING SYSTEMS

Patience, persistence, and perspiration make an unbeatable combination for success.

24

File Management

• System calls used:

 create file, delete file

 open, close

 read, write, reposition

 get file attributes, set file attributes

• Working procedure:

1. We need to create and delete files.

2. Once the file is created,
 → we need to open it and to use it.

 → we may also read or write.

3. Finally, we need to close the file.

• We need to be able to
 → determine the values of file-attributes and

 → reset the file-attributes if necessary.

• File attributes include
 → file name

 → file type

 → protection codes and

 → accounting information.

Device Management

• System calls used:
 request device, release device;

 read, write, reposition;

 get device attributes, set device attributes;

 logically attach or detach devices.

• A program may need additional resources to execute.

• Additional resources may be
 → memory

 → tape drives or

 → files.

• If the resources are available, they can be granted, and control can be returned to the user program;

If the resources are unavailable, the program may have to wait until sufficient resources are

available.

• Files can be thought of as virtual devices. Thus, many of the system calls used for files are also used

for devices.

• In multi-user environment,

 1. We must first request the device, to ensure exclusive use of it.

 2. After we are finished with the device, we must release it.

• Once the device has been requested (and allocated), we can read and write the device.

• Due to lot of similarity between I/O devices and files, OS (like UNIX) merges the two into a combined

file-device structure.

• UNIX merges I/O devices and files into a combined file-device structure.

OPERATING SYSTEMS

If you have talent and you work long and hard at it, anything in the world can be yours.

25

Information Maintenance

• System calls used:

 get time or date, set time or date

 get system data, set system data

 get process, file, or device attributes

 set process, file, or device attributes

• Many system calls exist simply for the purpose of transferring information between the user program

and the OS.

 For ex,

 1. Most systems have a system call to return
 → current time and

 → current date.

 2. Other system calls may return information about the system, such as
 → number of current users

 → version number of the OS

 → amount of free memory or disk space.

 3. The OS keeps information about all its processes, and there are system calls to access

 this information.

OPERATING SYSTEMS

An inventor fails 999 times and, and if he succeeds once, he's victorious. He treats his failures as practice shots.

26

Communication

• System calls used:

 create, delete communication connection

 send, receive messages

 transfer status information

 attach or detach remote devices

• Two models of communication.

 1) Message-passing model and 2) Shared Memory Model

Message Passing Model

• Information is exchanged through an IPC provided by OS.

 (IPC=inter process communication).

• Steps for communication:

1. Firstly, a connection must be opened using open connection system-call.

2. Each computer has a host-name, such as an IP name.

 Similarly, each process has a process-name, which is translated into an equivalent identifier.

 The get hostid & get processid system-calls do this translation.

3. Then, identifiers are passed to the open and close system-calls.

4. The recipient-process must give its permission for communication to take place with an

accept connection system-call.

 (The processes that will be receiving connections are called daemons processes).

5. Daemon processes
 → execute a wait for connection system-call and

 → are awakened when a connection is made.

6. Then, client & server exchange messages by read message and write message system

calls.

7. Finally, the close connection system-call terminates the communication.

• Advantages:

 1. Useful when smaller numbers of data need to be exchanged.

 2. It is also easier to implement than is shared memory.

Shared Memory Model

• Processes use map memory system-calls to gain access to regions of memory owned by other

processes.

• Several processes exchange information by reading and writing data in the shared memory.

• The shared memory
 → is determined by the processes and

 → are not under the control of OS.

• The processes are also responsible for ensuring that they are not writing to the same location

simultaneously.

• Advantage:

 1. Shared memory allows maximum speed and convenience of communication,

• Disadvantage:

 1. Problems exist in the areas of protection and synchronization.

OPERATING SYSTEMS

Intelligence without ambition is like a bird without wings.

27

System Programs

• They provide a convenient environment for program development and execution.

 (System programs also known as system utilities).

• They can be divided into these categories:

• Six categories of system-programs:

1. File Management

 These programs manipulate files i.e. create, delete, copy, and rename files.

2. Status Information
 Some programs ask the system for

 → date (or time)

 → amount of memory(or disk space) or

 → no. of users.

 These information is then printed to the terminal (or output-device or file).

3. File Modification

 Text editors can be used to create and modify the content of files stored on disk.

4. Programming Language Support
 Compilers, assemblers, and interpreters for common programming-languages (such as C,

C++) are provided to the user.

5. Program Loading & Execution
The system may provide

 → absolute loaders

 → relocatable loaders

 → linkage editors and

 → overlay loaders.

 Debugging-systems are also needed.

6. Communications
 These programs are used for creating virtual connections between

 → processes

 → users and

 → computer-systems.

 They allow users to

 → browse web-pages

 → send email or

 → log-in remotely.

• Most OSs are supplied with programs that

 → solve common problems or

 → perform common operations. Such programs include

 → web-browsers

 → word-processors

 → spreadsheets and

 → games.

 These programs are known as application programs.

OPERATING SYSTEMS

An obstacle may be either a stepping-stone or a stumbling block.

28

Operating System Design & Implementation

Design Goals

• The first problem in designing a system is to
 → define goals and

 → define specifications.

• The design of the system will be affected by
 → choice of hardware and

 → type of system such as

 i) batch or time shared

 ii) single user or multiuser

• Two basic groups of requirements:

1. User goals and 2. System goals

User Goals

• The system should be

 → convenient to use

 → easy to learn and to use

 → reliable, safe, and fast.

System Goals

• The system should be
→ easy to design

→ implement, and maintain

→ flexible, reliable, error free, and efficient.

Mechanisms & Policies

• Mechanisms determine how to do something.

• Policies determine what will be done.

• Separating policy and mechanism is important for flexibility.

• Policies change over time; mechanisms should be general.

Implementation

• OS's are nowadays written in higher-level languages like C/C++

• Advantages of higher-level languages:

 1. Faster development and

 2. OS is easier to port.

• Disadvantages of higher-level languages:

 1. Reduced speed and

 2. Increased storage requirements.

OPERATING SYSTEMS

There are no secrets to success. It is the result of preparation, hard work, and learning from failure.

29

Operating System Structure

1. Simple Structure

2. Layered Approach

3. Microkernels

4. Modules

Simple Structure

• These OSs are small, simple, and limited system.

• For example: MS-DOS and UNIX.

1. MS-DOS was written to provide the most functionality in the least space.

 Disadvantages:

 i) It was not divided into modules carefully (Figure 1.17).

 ii) The interfaces and levels of functionality are not well separated.

Figure 1.17 MS-DOS layer structure

 2. UNIX was initially limited by hardware functionality.

 Two parts of UNIX (Figure 1.18):

 1. Kernel and

 2. System programs.

 The kernel is further separated into a series of interfaces and device drivers.

 Everything below the system-call interface and above the physical hardware is the kernel.

 The kernel provides following functions through system calls:

 → file system

 → CPU scheduling and

 → memory management.

 Disadvantage:

 1. Difficult to enhance, as changes in one section badly affects other areas.

Figure 1.18 Traditional UNIX system structure

OPERATING SYSTEMS

Never mind what others do; do better than yourself, beat your own record each and everyday, and you are a success.

30

Layered Approach

• The OS is divided into a number of layers.

• Each layer is built on the top of another layer.

• The bottom layer is the hardware.

 The highest is the user interface (Figure 1.19).

• A layer is an implementation of an abstract-object.

 i.e. The object is made up of
 → data and

 → operations that can manipulate the data.

• The layer consists of a set of routines that can be invoked by higher-layers.

• Higher-layer
 → does not need to know how lower-layer operations are implemented

 → needs to know only what lower-layer operations do.

• Advantage:

1. Simplicity of construction and debugging.

• Disadvantages:

 1. Less efficient than other types.

 2. Appropriately defining the various layers.(‘.’ a layer can use only lower-layers, careful

 planning is necessary).

Figure 1.19 A layered OS

OPERATING SYSTEMS

"I can't do it" never accomplished anything; "I will try" has performed miracles.

31

MicroKernels

• Main function:

 To provide a communication facility between
 → client program and

 → various services running in user-space.

• Communication is provided by message passing (Figure 1.20).

• All non-essential components are
 → removed from the kernel and

 → implemented as system- & user-programs.

• Advantages:

 1. Ease of extending the OS. (New services are added to user space w/o modification of kernel).

 2. Easier to port from one hardware design to another.

 3. Provides more security & reliability.(If a service fails, rest of the OS remains untouched.).

 4. Provides minimal process and memory management.

 • Disadvantage:

1. Performance decreases due to increased system function overhead.

Figure 1.20 Architecture of a typical microkernel

OPERATING SYSTEMS

There are two ways of meeting difficulties: you can alter the difficulties, or you can alter yourself to meet the difficulties.

32

Modules

• The kernel has

 → set of core components and

 → dynamic links in additional services during boot time(or run time).

• Seven types of modules in the kernel (Figure 1.21):

1. Scheduling classes

2. File systems

3. Loadable system calls

4. Executable formats

5. STREAMS modules

6. Miscellaneous

7. Device and bus drivers

• The top layers include
 → application environments and

 → set of services providing a graphical interface to applications.

• Kernel environment consists primarily of
 → Mach microkernel and

 → BSD kernel.

• Mach provides
 → memory management;

 → support for RPCs & IPC and

 → thread scheduling.

• BSD component provides
 → BSD command line interface

 → support for networking and file systems and

 → implementation of POSIX APIs

• The kernel environment provides an I/O kit for development of
 → device drivers and

 → dynamic loadable modules (which Mac OS X refers to as kernel extensions).

Figure 1.21 Solaris loadable modules

OPERATING SYSTEMS

Start by doing what is necessary, then what is possible, and suddenly you are doing the impossible.

33

Virtual Machines

• Main idea:

 To abstract hardware of a single computer into several different execution environments.

• An OS creates the illusion that a process has
 → own processor &

 → own (virtual) memory.

• The virtual-machine provides
 → an interface that is identical to the underlying hardware (Figure 1.22).

 → a (virtual) copy of the underlying computer to each process.

Figure 1.22 System models, (a) Nonvirtual machine, (b) Virtual machine.

• Problem: Virtual-machine software itself will need substantial disk space to provide virtual memory.

Solution: provide virtual disks that are identical in all respects except size.

• Advantages:

1. Complete protection of the various system resources.

2. It is a perfect vehicle for OS’s R&D.

• Disadvantage:

 1. Difficult to implement due to effort required to provide an exact duplicate to underlying machine.

Operating System Generation

• OS is designed to run on any of a class of machines.

 However, the system must be configured for each specific computer site

• SYSGEN is used for configuring a system for each specific computer site

• SYSGEN program must determine:

1. What CPU will be used?

2. How will boot disk be formatted?

3. How much memory is available?

4. What devices are available?

5. What OS options are desired?

• A system-administrator can use the above information to modify a copy of the source code of the OS

System Boot

• Booting means starting a computer by loading the kernel.

• Bootstrap program is a code stored in ROM.

• The bootstrap program
 → locates the kernel

 → loads the kernel into main memory and

 → starts execution of kernel.

• OS must be made available to hardware so hardware can start it.

OPERATING SYSTEMS

A man can succeed at almost anything for which he has unlimited enthusiasm.

34

UNIT 2: PROCESS CONCEPTS

Process Concept

• A process is the unit-of-work.

• A system consists of a collection of processes:

 1. OS process can execute system-code and

 2. User process can execute user-code.

The Process

• A process is a program in execution.

• It also includes (Figure 2.1):

 1. Program counter to indicate the current activity.

 2. Registers content of the processor.

 3. Process stack contains temporary data.

 4. Data section contains global variables.

 5. Heap is memory that is dynamically allocated during process run time.

• A program by itself is not a process.

 1. A process is an active-entity.

 2. A program is a passive-entity such as an executable-file stored on disk.

• A program becomes a process when an executable-file is loaded into memory.

• If you run many copies of a program, each is a separate process.

 The text-sections are equivalent, but the data-sections vary.

Figure 2.1 Process in memory

Process State

• As a process executes, it changes state.

• Each process may be in one of the following states (Figure 2.2):

1. New: The process is being created.

2. Running: Instructions are being executed.

3. Waiting: The process is waiting for some event to occur (such as I/0 completions).

4. Ready: The process is waiting to be assigned to a processor.

5. Terminated: The process has finished execution.

• Only one process can be running on any processor at any instant.

Figure 2.2 Diagram of process state

OPERATING SYSTEMS

A man's dreams are an index to his greatness.

35

Process Control Block

• In OS, each process is represented by a PCB (Process Control Block).

Figure 2.3 Process control block (PCB)

• PCB contains following information about the process (Figure 2.3):

1. Process State

 The current state of process may be

 → new

 → ready

→ running

→ waiting or

→ halted.

2. Program Counter

 This indicates the address of the next instruction to be executed for the process.

3. CPU Registers
 These include

 → accumulators (AX)

 → index registers (SI, DI)

 → stack pointers (SP) and

 → general-purpose registers (BX, CX, DX).

4. CPU Scheduling Information

 This includes

 → priority of process

 → pointers to scheduling-queues and

 → scheduling-parameters.

5. Memory Management Information
 This includes

 → value of base- & limit-registers and

 → value of page-tables(or segment-tables).

6. Accounting Information
 This includes

 → amount of CPU time

 → time-limit and

 → process-number.

7. I/O Status Information
 This includes

 → list of I/O devices

 → list of open files.

OPERATING SYSTEMS

The only way to excellence is to consistently improve yourself every single day.

36

Process Scheduling

• Objective of multiprogramming:

 To have some process running at all times to maximize CPU utilization.

 Objective of time-sharing:

 To switch the CPU between processes so frequently that users can interact with each program

 while it is running.

• To meet above 2 objectives: Process scheduler is used to select an available process for program-

execution on the CPU.

Scheduling Queues

• Three types of scheduling-queues:

 1. Job Queue
 This consists of all processes in the system.

 As processes enter the system, they are put into a job-queue.

2. Ready Queue
 This consists of the processes that are

 → residing in main-memory and

 → ready & waiting to execute (Figure 2.4).

 This queue is generally stored as a linked list.

 A ready-queue header contains pointers to the first and final PCBs in the list.

 Each PCB has a pointer to the next PCB in the ready-queue.

3. Device Queue
 This consists of the processes that are waiting for an I/O device.

 Each device has its own device-queue.

• When the process is executing, one of following events could occur (Figure 2.5):

1. The process could issue an I/0 request and then be placed in an I/0 queue.

2. The process could create a new subprocess and wait for the subprocess's termination.

3. The process could be interrupted and put back in the ready-queue.

Figure 2.4 The ready-queue and various I/O device-queues

OPERATING SYSTEMS

Success comes to those who make it happen, not those who let it happen.

37

Figure 2.5 Queueing-diagram representation of process scheduling

OPERATING SYSTEMS

The happiness of your life depends on the quality of your thoughts.

38

Schedulers

• Three types of schedulers:

1. Long-term scheduler

2. Short-term scheduler and

3. Medium-term schedulers

Long-term Scheduler Short-term Scheduler

Also called job scheduler. Also called CPU scheduler.

Selects which processes should be brought

into the ready-queue.

Selects which process should be executed

next and allocates CPU.

Need to be invoked only when a process

leaves the system and therefore executes

much less frequently.

Need to be invoked to select a new process

for the CPU and therefore executes much

more frequently.

May be slow ‘,’ minutes may separate the

creation of one new process and the next.

Must be fast ‘,’ a process may execute for

only a few milliseconds.

Controls the degree of multiprogramming.

• Processes can be described as either:

 1. I/O-bound Process
  Spends more time doing I/O operation than doing computations.

  Many short CPU bursts.

 2. CPU-bound Process
  Spends more time doing computations than doing I/O operation.

  Few very long CPU bursts.

• Why long-term scheduler should select a good process mix of I/O-bound and CPU-bound processes ?

 Ans: 1) If all processes are I/0 bound, then

 i) Ready-queue will almost always be empty, and

 ii) Short-term scheduler will have little to do.

 2) If all processes are CPU bound, then

i) I/0 waiting queue will almost always be empty (devices will go unused) and

ii) System will be unbalanced.

• Some time-sharing systems have medium-term scheduler (Figure 2.6).
 The scheduler removes processes from memory and thus reduces the degree of

multiprogramming.

 Later, the process can be reintroduced into memory, and its execution can be continued

where it left off. This scheme is called swapping.
 The process is swapped out, and is later swapped in, by the scheduler.

Figure 2.6 Addition of medium-term scheduling to the queueing diagram

Context Switch

• Context-switch means saving the state of the old process and switching the CPU to another process.

• The context of a process is represented in the PCB of the process; it includes
 → value of CPU registers

 → process-state and

 → memory-management information.

• Disadvantages:

1. Context-switch time is pure overhead, because the system does no useful work while

switching.

2. Context-switch times are highly dependent on hardware support.

OPERATING SYSTEMS

Goals are like the stars: they are always there. Adversity is like the clouds: they are temporary and will move on.

Keep your eyes on the stars.

39

Operations on Processes

1. Process Creation and

2. Process Termination

Process Creation

• A process may create a new process via a create-process system-call.

• The creating process is called a parent-process.

 The new process created by the parent is called the child-process (Sub-process).

• OS identifies processes by pid (process identifier), which is typically an integer-number.

• A process needs following resources to accomplish the task:

 → CPU time

 → memory and

 → I/0 devices.

• Child-process may
 → get resources directly from the OS or

 → get resources of parent-process. This prevents any process from overloading the system.

• Two options exist when a process creates a new process:

1. The parent & the children execute concurrently.

2. The parent waits until all the children have terminated.

• Two options exist in terms of the address-space of the new process:

1. The child-process is a duplicate of the parent-process (it has the same program and data as

the parent).

2. The child-process has a new program loaded into it.

Process creation in UNIX

• In UNIX, each process is identified by its process identifier (pid), which is a unique integer.

• A new process is created by the fork() system-call (Figure 2.7 & 2.8).

• The new process consists of a copy of the address-space of the original process.

• Both the parent and the child continue execution with one difference:

 1. The return value for the fork() is

 zero for the new (child) process.

 2. The return value for the fork() is

 nonzero pid of the child for the parent-process.

• Typically, the exec() system-call is used after a fork() system-call by one of the two processes to

replace the process's memory-space with a new program.

• The parent can issue wait() system-call to move itself off the ready-queue.

Figure 2.7 Creating a separate process using the UNIX fork() system-call

OPERATING SYSTEMS

Failure is just an opportunity to begin again, this time more wisely.

40

Figure 2.8 Process creation using the fork() system-call

Process Termination

• A process terminates when it executes the last statement (in the program).

• Then, the OS deletes the process by using exit() system-call.

• Then, the OS de-allocates all the resources of the process. The resources include

 → memory

 → open files and

 → I/0 buffers.

• Process termination can occur in following cases:
 → A process can cause the termination of another process via TerminateProcess() system-call.

 → Users could arbitrarily kill the processes.

• A parent terminates the execution of children for following reasons:

1. The child has exceeded its usage of some resources.

2. The task assigned to the child is no longer required.

3. The parent is exiting, and the OS does not allow a child to continue.

• In some systems, if a process terminates, then all its children must also be terminated. This

phenomenon is referred to as cascading termination.

OPERATING SYSTEMS

A quitter never wins and a winner never quits.

41

Inter Process Communication (IPC)

• Processes executing concurrently in the OS may be either

 1. Independent processes or 2. Co-operating processes.

1. A process is independent if

 i) The process cannot affect or be affected by the other processes.

 ii) The process does not share data with other processes.

2. A process is co-operating if

 i) The process can affect or be affected by the other processes.

 ii) The process shares data with other processes.

• Advantages of process co-operation:

1. Information Sharing
 Since many users may be interested in same piece of information (ex: shared file).

2. Computation Speedup

 We must break the task into subtasks.

 Each subtask should be executed in parallel with the other subtasks.

 The speed can be improved only if computer has multiple processing elements such as

 → CPUs or

→ I/O channels.

3. Modularity
 Divide the system-functions into separate processes or threads.

4. Convenience

 An individual user may work on many tasks at the same time.

 For ex, a user may be editing, printing, and compiling in parallel.

• Two basic models of IPC (Figure 2.9):

1) Shared-memory and

2) Message passing.

Figure 2.9 Communications models. (a) Message passing. (b) Shared-memory

Shared-Memory Systems

• Communicating-processes must establish a region of shared-memory.

• A shared-memory resides in address-space of the process creating the shared-memory.

 Other processes must attach their address-space to the shared-memory.

• The processes can then exchange information by reading and writing data in the shared-memory.

• The processes are also responsible for ensuring that they are not writing to the same location

simultaneously.

• For ex, producer-consumer problem:

 Producer-process produces information that is consumed by a consumer-process

• Two types of buffers can be used:

1. Unbounded-buffer places no practical limit on the size of the buffer.

2. Bounded-buffer assumes that there is a fixed buffer-size.

• Advantages:

1. Allows maximum speed and convenience of communication.

 2. Faster.

OPERATING SYSTEMS

Success is the person who year after year, reaches the highest limits in his field.

42

Message-Passing Systems

• These allow processes to communicate and to synchronize their actions without sharing the same

address-space.

• For example, a chat program used on the WWW.

• Messages can be of either

 1) Fixed size or 2) Variable size.

1. If fixed-sized messages are used, the system-level implementation is simple.
 However, the programming task becomes more difficult.

2. If variable-sized messages are used, the system-level implementation is complex.

 However, the programming task becomes simpler.

• A communication-link must exist between processes to communicate

• Three methods for implementing a link:

1. Direct or indirect communication.

2. Symmetric or asymmetric communication.

3. Automatic or explicit buffering.

• Two operations:

 1. send(P,message): Send a message to process P.

 2. receive(Q,message): Receive a message from process Q.

• Advantages:

 1. Useful for exchanging smaller amounts of data (‘.’ No conflicts need be avoided).

 2. Easier to implement.

 3. Useful in a distributed environment.

Naming

• Processes that want to communicate must have a way to refer to each other. They can use either

direct or indirect communication.

Direct Communication Indirect Communication

Each process must explicitly name the

recipient/sender.

Messages are sent to/received from

mailboxes (or ports).

Properties of a communication link:
 A link is established automatically between

every pair of processes that want to

communicate. The processes need to know

only each other’s identity to communicate.

 A link is associated with exactly two

processes.
 Exactly one link exists between each pair

of processes.

Properties of a communication link:
 A link is established between a pair of

processes only if both members have a

shared mailbox.
 A link may be associated with more than

two processes.
 A number of different links may exist

between each pair of communicating

processes.

Symmetric addressing:
 Both sender and receiver processes must

name the other to communicate.

Mailbox owned by a process:
 The owner can only receive, and the user

can only send.
 The mailbox disappears when its owner

process terminates.

Asymmetric addressing:
 Only the sender names the recipient; the

recipient needn't name the sender.

Mailbox owned by the OS:
 The OS allows a process to:

 1. Create a new mailbox

 2. Send & receive messages via it

 3. Delete a mailbox.

OPERATING SYSTEMS

If we don't change, we don't grow. If we don't grow, we aren't really living.

43

Synchronization

• Message passing may be either blocking or non-blocking (also known as synchronous and

asynchronous).

Synchronous Message Passing Asynchronous Message Passing

Blocking send:
The sending process is blocked until the

message is received by the receiving process

or by the mailbox.

Non-blocking send:
 The sending process sends the message

and resumes operation.

Blocking receive:
The receiver blocks until a message is

available.

Non-blocking receive:
 The receiver retrieves either a valid

message or a null.

Buffering

• Messages exchanged by processes reside in a temporary queue.

• Three ways to implement a queue:

1. Zero Capacity
 The queue-length is zero.

 The link can't have any messages waiting in it.

 The sender must block until the recipient receives the message.

2. Bounded Capacity
 The queue-length is finite.

 If the queue is not full, the new message is placed in the queue.

 The link capacity is finite.

 If the link is full, the sender must block until space is available in the queue.

3. Unbounded Capacity

 The queue-length is potentially infinite.

 Any number of messages can wait in the queue.

 The sender never blocks.

OPERATING SYSTEMS

No life ever grows great until it is focused, dedicated, and disciplined.

44

UNIT 2(CONT.): MULTITHREADED PROGRAMMING

Multithreaded Programming

• A thread is a basic unit of CPU utilization.

• It consists of
 → thread ID

 → PC

 → register-set and

 → stack.

• It shares with other threads belonging to the same process its code-section & data-section.

• A traditional (or heavy weight) process has a single thread of control.

• If a process has multiple threads of control, it can perform more than one task at a time. Such a

process is called multithreaded process (Figure 2.10).

Figure 2.10 Single-threaded and multithreaded processes

Motivation for Multithreaded Programming

1. The software-packages that run on modern PCs are multithreaded.

An application is implemented as a separate process with several threads of control.

 For ex: A word processor may have
 → first thread for displaying graphics

 → second thread for responding to keystrokes and

 → third thread for performing grammar checking.

2. In some situations, a single application may be required to perform several similar tasks.

 For ex: A web-server may create a separate thread for each client request.

 This allows the server to service several concurrent requests.

3. RPC servers are multithreaded.

 When a server receives a message, it services the message using a separate thread.

 This allows the server to service several concurrent requests.

4. Most OS kernels are multithreaded;

 Several threads operate in kernel, and each thread performs a specific task, such as

 → managing devices or

 → interrupt handling.

OPERATING SYSTEMS

Time is our most valuable asset, yet we tend to waste it, kill it, and spend it rather than invest it.

45

Benefits of Multithreaded Programming

1. Responsiveness

• A program may be allowed to continue running even if part of it is blocked.

 Thus, increasing responsiveness to the user.

2. Resource Sharing

• By default, threads share the memory (and resources) of the process to which they belong.

 Thus, an application is allowed to have several different threads of activity within the same

 address-space.

3. Economy

• Allocating memory and resources for process-creation is costly.

 Thus, it is more economical to create and context-switch threads.

4. Utilization of Multiprocessor Architectures

• In a multiprocessor architecture, threads may be running in parallel on different processors.

 Thus, parallelism will be increased.

OPERATING SYSTEMS

Motivation is what gets you started; habit is what keeps you going.

46

Multithreading Models

• Support for threads may be provided at either

 1. The user level, for user threads or

 2. By the kernel, for kernel threads.

• User-threads are supported above the kernel and are managed without kernel support.

 Kernel-threads are supported and managed directly by the OS.

• Three ways of establishing relationship between user-threads & kernel-threads:

1. Many-to-one model

2. One-to-one model and

3. Many-to-many model.

Many-to-One Model

• Many user-level threads are mapped to one kernel thread (Figure 2.11).

• Advantage:

 1. Thread management is done by the thread library in user space, so it is efficient.

• Disadvantages:

 1. The entire process will block if a thread makes a blocking system-call.

 2. Multiple threads are unable to run in parallel on multiprocessors.

• For example:
 → Solaris green threads

 → GNU portable threads.

 Figure 2.11 Many-to-one model Figure 2.12 One-to-one model

One-to-One Model

• Each user thread is mapped to a kernel thread (Figure 2.12).

• Advantages:

1. It provides more concurrency by allowing another thread to run when a thread makes a

blocking system-call.

2. Multiple threads can run in parallel on multiprocessors.

• Disadvantage:

 1. Creating a user thread requires creating the corresponding kernel thread.

• For example:
 → Windows NT/XP/2000

 → Linux

OPERATING SYSTEMS

Those who want to succeed will find a way; those who don't will find an excuse.

47

Many-to-Many Model

• Many user-level threads are multiplexed to a smaller number of kernel threads (Figure 2.13).

• Advantages:

 1. Developers can create as many user threads as necessary

 2. The kernel threads can run in parallel on a multiprocessor.

 3. When a thread performs a blocking system-call, kernel can schedule another thread for execution.

Two Level Model

• A variation on the many-to-many model is the two level-model (Figure 2.14).

• Similar to M:M, except that it allows a user thread to be bound to kernel thread.

• For example:

 → HP-UX

 → Tru64 UNIX

 Figure 2.13 Many-to-many model Figure 2.14 Two-level model

OPERATING SYSTEMS

Discipline is the bridge between goals and accomplishment.

48

Thread Libraries

• It provides the programmer with an API for the creation and management of threads.

• Two ways of implemention:

 1. First Approach
  Provides a library entirely in user space with no kernel support.

  All code and data structures for the library exist in the user space.

 2. Second Approach
  Implements a kernel-level library supported directly by the OS.

  Code and data structures for the library exist in kernel space.

• Three main thread libraries:

 1. POSIX Pthreads

 2. Win32 and

 3. Java.

Pthreads

• This is a POSIX standard API for thread creation and synchronization.

• This is a specification for thread-behavior, not an implementation.

• OS designers may implement the specification in any way they wish.

• Commonly used in: UNIX and Solaris.

Java Threads

• Threads are the basic model of program-execution in
 → Java program and

 → Java language.

• The API provides a rich set of features for the creation and management of threads.

• All Java programs comprise at least a single thread of control.

• Two techniques for creating threads:

1. Create a new class that is derived from the Thread class and override its run() method.

2. Define a class that implements the Runnable interface. The Runnable interface is defined as

follows:

OPERATING SYSTEMS

You must think of failure and defeat as the spring boards to new achievements, and to the next level of accomplishment.

49

Threading Issues

fork() and exec() System-calls

• fork() is used to create a separate, duplicate process.

• If one thread in a program calls fork(), then

 1. Some systems duplicates all threads and

 2. Other systems duplicate only the thread that invoked the forkO.

• If a thread invokes the exec(), the program specified in the parameter to exec() will replace the

entire process including all threads.

Thread Cancellation

• This is the task of terminating a thread before it has completed.

• Target thread is the thread that is to be canceled

• Thread cancellation occurs in two different cases:

 1. Asynchronous cancellation: One thread immediately terminates the target thread.

 2. Deferred cancellation: The target thread periodically checks whether it should be terminated.

Signal Handling

• In UNIX, a signal is used to notify a process that a particular event has occurred.

• All signals follow this pattern:

1. A signal is generated by the occurrence of a certain event.

2. A generated signal is delivered to a process.

3. Once delivered, the signal must be handled.

• A signal handler is used to process signals.

• A signal may be received either synchronously or asynchronously, depending on the source.

1. Synchronous signals
 Delivered to the same process that performed the operation causing the signal.

 E.g. illegal memory access and division by 0.

2. Asynchronous signals
 Generated by an event external to a running process.

 E.g. user terminating a process with specific keystrokes <ctrl><c>.

• Every signal can be handled by one of two possible handlers:

1. A Default Signal Handler

 Run by the kernel when handling the signal.

 2. A User-defined Signal Handler
 Overrides the default signal handler.

• In single-threaded programs, delivering signals is simple (since signals are always delivered to a

process).

 In multithreaded programs, delivering signals is more complex. Then, the following options exist:

1. Deliver the signal to the thread to which the signal applies.

2. Deliver the signal to every thread in the process.

3. Deliver the signal to certain threads in the process.

4. Assign a specific thread to receive all signals for the process.

Thread Pools

• The basic idea is to
 → create a no. of threads at process-startup and

 → place the threads into a pool (where they sit and wait for work).

• Procedure:

1. When a server receives a request, it awakens a thread from the pool.

2. If any thread is available, the request is passed to it for service.

3. Once the service is completed, the thread returns to the pool.

• Advantages:

1. Servicing a request with an existing thread is usually faster than waiting to create a thread.

2. The pool limits the no. of threads that exist at any one point.

• No. of threads in the pool can be based on factors such as
 → no. of CPUs

 → amount of memory and

 → expected no. of concurrent client-requests.

OPERATING SYSTEMS

We cannot change yesterday; we can only make the most of today and look with hope toward tomorrow.

50

UNIT 2(CONT.): PROCESS SCHEDULING

Basic Concepts

• In a single-processor system,
 → only one process may run at a time.

 → other processes must wait until the CPU is rescheduled.

• Objective of multiprogramming:
 → to have some process running at all times, in order to maximize CPU utilization.

CPU-I/0 Burst Cycle

• Process execution consists of a cycle of
 → CPU execution and

 → I/O wait (Figure 2.15 & 2.16).

• Process execution begins with a CPU burst, followed by an I/O burst, then another CPU burst, etc…

• Finally, a CPU burst ends with a request to terminate execution.

• An I/O-bound program typically has many short CPU bursts.

 A CPU-bound program might have a few long CPU bursts.

Figure 2.15 Alternating sequence of CPU and I/O bursts

Figure 2.16 Histogram of CPU-burst durations

OPERATING SYSTEMS

One of the most important principles of success is developing the habit of going the extra mile.

51

CPU Scheduler

• This scheduler

 → selects a waiting-process from the ready-queue and

 → allocates CPU to the waiting-process.

• The ready-queue could be a FIFO, priority queue, tree and list.

• The records in the queues are generally process control blocks (PCBs) of the processes.

CPU Scheduling

• Four situations under which CPU scheduling decisions take place:

1. When a process switches from the running state to the waiting state.

 For ex; I/O request.

2. When a process switches from the running state to the ready state.

 For ex: when an interrupt occurs.

3. When a process switches from the waiting state to the ready state.

 For ex: completion of I/O.

4. When a process terminates.

• Scheduling under 1 and 4 is non-preemptive.

 Scheduling under 2 and 3 is preemptive.

Non Preemptive Scheduling

• Once the CPU has been allocated to a process, the process keeps the CPU until it releases the CPU

either
 → by terminating or

 → by switching to the waiting state.

Preemptive Scheduling

• This is driven by the idea of prioritized computation.

• Processes that are runnable may be temporarily suspended

• Disadvantages:

1. Incurs a cost associated with access to shared-data.

2. Affects the design of the OS kernel.

Dispatcher

• It gives control of the CPU to the process selected by the short-term scheduler.

• The function involves:

1. Switching context

2. Switching to user mode &

3. Jumping to the proper location in the user program to restart that program.

• It should be as fast as possible, since it is invoked during every process switch.

• Dispatch latency means the time taken by the dispatcher to
 → stop one process and

 → start another running.

OPERATING SYSTEMS

The secret to success is to do common things uncommonly well.

52

Scheduling Criteria

• Different CPU-scheduling algorithms

 → have different properties and

 → may favor one class of processes over another.

• Criteria to compare CPU-scheduling algorithms:

1. CPU Utilization
 We must keep the CPU as busy as possible.

 In a real system, it ranges from 40% to 90%.

2. Throughput
 Number of processes completed per time unit.

 For long processes, throughput may be 1 process per hour;

 For short transactions, throughput might be 10 processes per second.

3. Turnaround Time
 The interval from the time of submission of a process to the time of completion.

 Turnaround time is the sum of the periods spent

 → waiting to get into memory

 → waiting in the ready-queue

 → executing on the CPU and

 → doing I/O.

4. Waiting Time
 The amount of time that a process spends waiting in the ready-queue.

5. Response Time

 The time from the submission of a request until the first response is produced.

 The time is generally limited by the speed of the output device.

• We want

 → to maximize CPU utilization and throughput and

 → to minimize turnaround time, waiting time, and response time.

OPERATING SYSTEMS

We must have courage to bet on our ideas, take the calculated risk, and take action!

53

Scheduling Algorithms

• CPU scheduling deals with the problem of deciding which of the processes in the ready-queue is to be

allocated the CPU.

• Following are some scheduling algorithms:

1. FCFS scheduling (First Come First Served)

2. Round Robin scheduling

3. SJF scheduling (Shortest Job First)

4. SRT scheduling

5. Priority scheduling

6. Multilevel Queue scheduling and

7. Multilevel Feedback Queue scheduling

FCFS Scheduling

• The process that requests the CPU first is allocated the CPU first.

• The implementation is easily done using a FIFO queue.

• Procedure:

 1. When a process enters the ready-queue, its PCB is linked onto the tail of the queue.

 2. When the CPU is free, the CPU is allocated to the process at the queue’s head.

 3. The running process is then removed from the queue.

• Advantage:

 1. Code is simple to write & understand.

• Disadvantages:

1. Convoy effect: All other processes wait for one big process to get off the CPU.

2. Non-preemptive (a process keeps the CPU until it releases it).

3. Not good for time-sharing systems.

4. The average waiting time is generally not minimal.

• Example: Suppose that the processes arrive in the order P1, P2, P3.

• The Gantt Chart for the schedule is as follows:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

• Suppose that the processes arrive in the order P2, P3, P1.

• The Gantt chart for the schedule is as follows:

• Waiting time for P1 = 6;P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

OPERATING SYSTEMS

If you can't find the key to success, pick the lock.

54

SJF Scheduling

• The CPU is assigned to the process that has the smallest next CPU burst.

• If two processes have the same length CPU burst, FCFS scheduling is used to break the tie.

• For long-term scheduling in a batch system, we can use the process time limit specified by the user,

as the ‘length’

• SJF can't be implemented at the level of short-term scheduling, because there is no way to know the

length of the next CPU burst

• Advantage:

1. The SJF is optimal, i.e. it gives the minimum average waiting time for a given set of

processes.

• Disadvantage:

 1. Determining the length of the next CPU burst.

• SJF algorithm may be either 1) non-preemptive or 2) preemptive.

1. Non preemptive SJF
 The current process is allowed to finish its CPU burst.

2. Preemptive SJF

 If the new process has a shorter next CPU burst than what is left of the executing process,

that process is preempted.
 It is also known as SRTF scheduling (Shortest-Remaining-Time-First).

• Example (for non-preemptive SJF): Consider the following set of processes, with the length of the

CPU-burst time given in milliseconds.

• For non-preemptive SJF, the Gantt Chart is as follows:

• Waiting time for P1 = 3; P2 = 16; P3 = 9; P4=0

 Average waiting time: (3 + 16 + 9 + 0)/4 = 7

• Example (preemptive SJF): Consider the following set of processes, with the length of the CPU-burst

time given in milliseconds.

• For preemptive SJF, the Gantt Chart is as follows:

• The average waiting time is ((10 - 1) + (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5.

OPERATING SYSTEMS

It takes time to succeed because success is merely the natural reward of taking time to do anything well.

55

Priority Scheduling

• A priority is associated with each process.

• The CPU is allocated to the process with the highest priority.

• Equal-priority processes are scheduled in FCFS order.

• Priorities can be defined either internally or externally.

1. Internally-defined priorities.

 Use some measurable quantity to compute the priority of a process.

 For example: time limits, memory requirements, no. of open files.

2. Externally-defined priorities.

 Set by criteria that are external to the OS

 For example:

 → importance of the process

 → political factors

• Priority scheduling can be either preemptive or nonpreemptive.

1. Preemptive
 The CPU is preempted if the priority of the newly arrived process is higher than the priority of

the currently running process.

2. Non Preemptive

 The new process is put at the head of the ready-queue

• Advantage:

 1. Higher priority processes can be executed first.

• Disadvantage:

 1. Indefinite blocking, where low-priority processes are left waiting indefinitely for CPU.

 Solution: Aging is a technique of increasing priority of processes that wait in system for a long time.

• Example: Consider the following set of processes, assumed to have arrived at time 0, in the order PI,

P2, ..., P5, with the length of the CPU-burst time given in milliseconds.

• The Gantt chart for the schedule is as follows:

• The average waiting time is 8.2 milliseconds.

OPERATING SYSTEMS

Winners must have two things: definite goals, and a burning desire to achieve them.

56

Round Robin Scheduling

• Designed especially for timesharing systems.

• It is similar to FCFS scheduling, but with preemption.

• A small unit of time is called a time quantum (or time slice).

• Time quantum is ranges from 10 to 100 ms.

• The ready-queue is treated as a circular queue.

• The CPU scheduler
 → goes around the ready-queue and

 → allocates the CPU to each process for a time interval of up to 1 time quantum.

• To implement:

 The ready-queue is kept as a FIFO queue of processes

• CPU scheduler

 1. Picks the first process from the ready-queue.

 2. Sets a timer to interrupt after 1 time quantum and

 3. Dispatches the process.

• One of two things will then happen.

 1. The process may have a CPU burst of less than 1 time quantum.

 In this case, the process itself will release the CPU voluntarily.

 2. If the CPU burst of the currently running process is longer than 1 time quantum,

 the timer will go off and will cause an interrupt to the OS.

 The process will be put at the tail of the ready-queue.

• Advantage:

 1. Higher average turnaround than SJF.

• Disadvantage:

 1. Better response time than SJF.

• Example: Consider the following set of processes that arrive at time 0, with the length of the CPU-

burst time given in milliseconds.

• The Gantt chart for the schedule is as follows:

• The average waiting time is 17/3 = 5.66 milliseconds.

• The RR scheduling algorithm is preemptive.

 No process is allocated the CPU for more than 1 time quantum in a row. If a process' CPU burst

 exceeds 1 time quantum, that process is preempted and is put back in the ready-queue..

• The performance of algorithm depends heavily on the size of the time quantum (Figure 2.17 & 2.18).

 1. If time quantum=very large, RR policy is the same as the FCFS policy.

 2. If time quantum=very small, RR approach appears to the users as though each of n

 processes has its own processor running at l/n the speed of the real processor.

• In software, we need to consider the effect of context switching on the performance of RR scheduling

 1. Larger the time quantum for a specific process time, less time is spend on context switching.

 2. The smaller the time quantum, more overhead is added for the purpose of context-switching.

OPERATING SYSTEMS

A man is a success if he gets up in the morning and goes to bed at night, and in between does what he wants to do.

57

Figure 2.17 How a smaller time quantum increases context switches

Figure 2.18 How turnaround time varies with the time quantum

OPERATING SYSTEMS

I don't know the key to success, but the key to failure is trying to please everybody.

58

Multilevel Queue Scheduling

• Useful for situations in which processes are easily classified into different groups.

• For example, a common division is made between
 → foreground (or interactive) processes and

 → background (or batch) processes.

• The ready-queue is partitioned into several separate queues (Figure 2.19).

• The processes are permanently assigned to one queue based on some property like
 → memory size

 → process priority or

 → process type.

• Each queue has its own scheduling algorithm.

 For example, separate queues might be used for foreground and background processes.

Figure 2.19 Multilevel queue scheduling

• There must be scheduling among the queues, which is commonly implemented as fixed-priority

preemptive scheduling.

 For example, the foreground queue may have absolute priority over the background queue.

• Time slice: each queue gets a certain amount of CPU time which it can schedule amongst its

processes; i.e., 80% to foreground in RR

 20% to background in FCFS

OPERATING SYSTEMS

He has achieved success if he has lived well, laughed often, and loved much.

59

Multilevel Feedback Queue Scheduling

• A process may move between queues (Figure 2.20).

• The basic idea:

 Separate processes according to the features of their CPU bursts. For example

1. If a process uses too much CPU time, it will be moved to a lower-priority queue.
  This scheme leaves I/O-bound and interactive processes in the higher-priority

queues.

2. If a process waits too long in a lower-priority queue, it may be moved to a higher-

priority queue

 This form of aging prevents starvation.

Figure 2.20 Multilevel feedback queues.

• In general, a multilevel feedback queue scheduler is defined by the following parameters:

1. The number of queues.

2. The scheduling algorithm for each queue.

3. The method used to determine when to upgrade a process to a higher priority queue.

4. The method used to determine when to demote a process to a lower priority queue.

5. The method used to determine which queue a process will enter when that process needs

service.

OPERATING SYSTEMS

To learn, you have to listen. To improve, you have to try.

60

Multiple Processor Scheduling

• If multiple CPUs are available, the scheduling problem becomes more complex.

• Two approaches:

1. Asymmetric Multiprocessing
 The basic idea is:

1. A master server is a single processor responsible for all scheduling decisions, I/O

processing and other system activities.

2. The other processors execute only user code.
 Advantage:

 1. This is simple because only one processor accesses the system data structures,

 reducing the need for data sharing.

2. Symmetric Multiprocessing
 The basic idea is:

1. Each processor is self-scheduling.

2. To do scheduling, the scheduler for each processor

 i. Examines the ready-queue and

 ii. Selects a process to execute.
 Restriction: We must ensure that two processors do not choose the same process and that

processes are not lost from the queue.

Processor Affinity

• In SMP systems,

 1. Migration of processes from one processor to another are avoided and

 2. Instead processes are kept running on same processor. This is known as processor affinity.

• Two forms:

1. Soft Affinity

 When an OS try to keep a process on one processor because of policy, but cannot guarantee

it will happen.
 It is possible for a process to migrate between processors.

2. Hard Affinity
 When an OS have the ability to allow a process to specify that it is not to migrate to other

processors. Eg: Solaris OS

Load Balancing

• This attempts to keep the workload evenly distributed across all processors in an SMP system.

• Two approaches:

1. Push Migration
 A specific task periodically checks the load on each processor and if it finds an imbalance, it

evenly distributes the load to idle processors.

2. Pull Migration

 An idle processor pulls a waiting task from a busy processor.

Symmetric Multithreading

• The basic idea:

 1. Create multiple logical processors on the same physical processor.

 2. Present a view of several logical processors to the OS.

• Each logical processor has its own architecture state, which includes general-purpose and machine-

state registers.

• Each logical processor is responsible for its own interrupt handling.

• SMT is a feature provided in hardware, not software.

OPERATING SYSTEMS

Good things come to people who wait, but better things come to those who go out and get them.

61

Thread Scheduling

• On OSs, it is kernel-level threads but not processes that are being scheduled by the OS.

• User-level threads are managed by a thread library, and the kernel is unaware of them.

• To run on a CPU, user-level threads must be mapped to an associated kernel-level thread.

Contention Scope

• Two approaches:

1. Process-Contention scope

• On systems implementing the many-to-one and many-to-many models, the thread library

schedules user-level threads to run on an available LWP.

• Competition for the CPU takes place among threads belonging to the same process.

2. System-Contention scope

• The process of deciding which kernel thread to schedule on the CPU.

• Competition for the CPU takes place among all threads in the system.

• Systems using the one-to-one model schedule threads using only SCS.

Pthread Scheduling

• Pthread API that allows specifying either PCS or SCS during thread creation.

• Pthreads identifies the following contention scope values:

1. PTHREAD_SCOPEJPROCESS schedules threads using PCS scheduling.

2. PTHREAD-SCOPE_SYSTEM schedules threads using SCS scheduling.

• Pthread IPC provides following two functions for getting and setting the contention scope policy:

1. pthread_attr_setscope(pthread_attr_t *attr, int scope)

2. pthread_attr_getscope(pthread_attr_t *attr, int *scope)

OPERATING SYSTEMS

Try not to become a person of success, but rather try to become a person of value.

62

UNIT 3: PROCESS SYNCHRONIZATION

Synchronization

• Co-operating process is one that can affect or be affected by other processes.

• Co-operating processes may either
 → share a logical address-space (i.e. code & data) or

 → share data through files or

 → messages through threads.

• Concurrent-access to shared-data may result in data-inconsistency.

• To maintain data-consistency:

 The orderly execution of co-operating processes is necessary.

• Suppose that we wanted to provide a solution to producer-consumer problem that fills all buffers.

 We can do so by having an variable counter that keeps track of the no. of full buffers.

 Initially, counter=0.
  counter is incremented by the producer after it produces a new buffer.

  counter is decremented by the consumer after it consumes a buffer.

• Shared-data:

 Producer Process: Consumer Process:

• A situation where several processes access & manipulate same data concurrently and the outcome of

the execution depends on particular order in which the access takes place, is called a race condition.

• Example:

 counter++ could be implemented as: counter— may be implemented as:

• Consider this execution interleaving with counter = 5 initially:

• The value of counter may be either 4 or 6, where the correct result should be 5. This is an example

for race condition.

• To prevent race conditions, concurrent-processes must be synchronized.

OPERATING SYSTEMS

A successful man is one who can lay a firm foundation with the bricks others have thrown at him.

63

Critical-section Problem

• Critical-section is a segment-of-code in which a process may be

 → changing common variables

 → updating a table or

 → writing a file.

• Each process has a critical-section in which the shared-data is accessed.

• General structure of a typical process has following (Figure 3.1):

1. Entry-section

 Requests permission to enter the critical-section.

2. Critical-section
 Mutually exclusive in time i.e. no other process can execute in its critical-section.

3. Exit-section
 Follows the critical-section.

4. Remainder-section

Figure 3.1 General structure of a typical process

• Problem statement:

 “Ensure that when one process is executing in its critical-section, no other process is to be allowed

 to execute in its critical-section”.

• A solution to the problem must satisfy the following 3 requirements:

1. Mutual Exclusion
 Only one process can be in its critical-section.

2. Progress
 Only processes that are not in their remainder-section can enter their critical-section, and the

selection of a process cannot be postponed indefinitely.

3. Bounded Waiting
 There must be a bound on the number of times that other processes are allowed to enter

their critical-sections after a process has made a request to enter its critical-section and before

the request is granted.

• Two approaches used to handle critical-sections:

1. Preemptive Kernels
 Allows a process to be preempted while it is running in kernel-mode.

2. Non-preemptive Kernels
 Does not allow a process running in kernel-mode to be preempted.

OPERATING SYSTEMS

The whole secret of a successful life is to find out what is one's destiny to do, and then do it.

64

Peterson’s Solution

• This is a classic software-based solution to the critical-section problem.

• This is limited to 2 processes.

• The 2 processes alternate execution between
 → critical-sections and

 → remainder-sections.

• The 2 processes share 2 variables (Figure 3.2):

 where turn = indicates whose turn it is to enter its critical-section.

 (i.e., if turn==i, then process Pi is allowed to execute in its critical-section).

 flag = used to indicate if a process is ready to enter its critical-section.

 (i.e. if flag[i]=true, then Pi is ready to enter its critical-section).

Figure 3.2 The structure of process Pi in Peterson’s solution

• To enter the critical-section,
 → firstly process Pi sets flag[i] to be true and

 → then sets turn to the value j.

• If both processes try to enter at the same time, turn will be set to both i and j at roughly the same

time.

• The final value of turn determines which of the 2 processes is allowed to enter its critical-section first.

• To prove that this solution is correct, we show that:

1. Mutual-exclusion is preserved.

2. The progress requirement is satisfied.

3. The bounded-waiting requirement is met.

OPERATING SYSTEMS

No masterpiece was ever created by a lazy artist.

65

Synchronization Hardware

Hardware based Solution for Critical-section Problem

• A lock is a simple tool used to solve the critical-section problem.

• Race conditions are prevented by following restriction (Figure 3.3).

 “A process must acquire a lock before entering a critical-section.

 The process releases the lock when it exits the critical-section”.

Figure 3.3: Solution to the critical-section problem using locks

Hardware instructions for solving critical-section problem

• Modern systems provide special hardware instructions

 → to test & modify the content of a word atomically or

 → to swap the contents of 2 words atomically.

• Atomic-operation means an operation that completes in its entirety without interruption.

TestAndSet()

• This instruction is executed atomically (Figure 3.4).

• If two TestAndSet() are executed simultaneously (on different CPU), they will be executed

sequentially in some arbitrary order.

Figure 3.4 The definition of the test and set() instruction

TestAndSet with Mutual Exclusion

• If the machine supports the TestAndSet(), we can implement mutual-exclusion by declaring a

boolean variable lock, initialized to false (Figure 3.5).

Figure 3.5 Mutual-exclusion implementation with test and set()

OPERATING SYSTEMS

What's the point of being alive if you don't at least try to do something remarkable.

66

Swap()

• This instruction is executed atomically (Figure 3.6).

• If the machine supports the Swap(), then mutual-exclusion can be provided as follows:

 1. A global boolean variable lock is declared and is initialized to false.

 2. In addition, each process has a local Boolean variable key (Figure 3.7).

Figure 3.6 The definition of swap() instruction

Figure 3.7 Mutual-exclusion implementation with the swap() instruction

Bounded waiting Mutual Exclusion with TestAndSet()

• Common data structures are

• These data structures are initialized to false (Figure 3.8).

Figure 3.8 Bounded-waiting mutual-exclusion with TestandSet()

OPERATING SYSTEMS

Success is the sum of small efforts, repeated day-in and day-out.

67

Semaphores

• A semaphore is a synchronization-tool.

• It used to control access to shared-variables so that only one process may at any point in time

change the value of the shared-variable.

• A semaphore(S) is an integer-variable that is accessed only through 2 atomic-operations:

 1. wait() and

 2. signal().

• wait() is termed P ("to test").

 signal() is termed V ("to increment").

• Definition of wait(): Definition of signal():

• When one process modifies the semaphore-value, no other process can simultaneously modify that

same semaphore-value.

• Also, in the case of wait(S), following 2 operations must be executed without interruption:

 1. Testing of S(S<=0) and

 2. Modification of S (S--)

OPERATING SYSTEMS

We become what we think about most of the time, and that's the strangest secret.

68

Semaphore Usage

Counting Semaphore

• The value of a semaphore can range over an unrestricted domain

Binary Semaphore

• The value of a semaphore can range only between 0 and 1.

• On some systems, binary semaphores are known as mutex locks, as they are locks that provide

mutual-exclusion.

1) Solution for Critical-section Problem using Binary Semaphores

• Binary semaphores can be used to solve the critical-section problem for multiple processes.

• The ‘n’ processes share a semaphore mutex initialized to 1 (Figure 3.9).

Figure 3.9 Mutual-exclusion implementation with semaphores

2) Use of counting semaphores

• Counting semaphores can be used to control access to a given resource consisting of a finite number

o£ instances.

• The semaphore is initialized to the number of resources available.

• Each process that wishes to use a resource performs a wait() operation on the semaphore (thereby

decrementing the count).

• When a process releases a resource, it performs a signal() operation (incrementing the count).

• When the count for the semaphore goes to 0, all resources are being used.

• After that, processes that wish to use a resource will block until the count becomes greater than 0.

3) Solving synchronization problems

• Semaphores can also be used to solve synchronization problems.

• For example, consider 2 concurrently running-processes:

 P1 with a statement S1 and

 P2 with a statement S2.

• Suppose we require that S2 be executed only after S1 has completed.

• We can implement this scheme readily
 → by letting P1 and P2 share a common semaphore synch initialized to 0, and

 → by inserting the following statements in process P1

 and the following statements in process P2

• Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked signal (synch), which is

after statement S1 has been executed.

OPERATING SYSTEMS

Innovation distinguishes between a leader and a follower.

69

Semaphore Implementation

• Main disadvantage of semaphore:

 1. Busy waiting.

• Busy waiting: While a process is in its critical-section, any other process that tries to enter its

critical-section must loop continuously in the entry code.

• Busy waiting wastes CPU cycles that some other process might be able to use productively.

• This type of semaphore is also called a spinlock (because the process "spins" while waiting for the

lock).

• To overcome busy waiting, we can modify the definition of the wait() and signal() as follows:

 1. When a process executes the wait() and finds that the semaphore-value is not positive, it

 must wait. However, rather than engaging in busy waiting, the process can block itself.

 2. A process that is blocked (waiting on a semaphore S) should be restarted when some other

 process executes a signal(). The process is restarted by a wakeup().

• We assume 2 simple operations:

1. block() suspends the process that invokes it.

2. wakeup(P) resumes the execution of a blocked process P.

• We define a semaphore as follows:

• Definition of wait(): Definition of signal():

• This (critical-section) problem can be solved in two ways:

1. In a uni-processor environment

  Inhibit interrupts when the wait and signal operations execute.

  Only current process executes, until interrupts are re-enabled & the scheduler regains

 control.

2. In a multiprocessor environment
  Inhibiting interrupts doesn't work.

  Use the hardware / software solutions described above.

OPERATING SYSTEMS

When you stop chasing the wrong things you give the right things a chance to catch you.

70

Deadlocks & Starvation

• Deadlock occurs when 2 or more processes are waiting indefinitely for an event that can be caused

by only one of the waiting processes.

• The event in question is the execution of a signal() operation.

• To illustrate this, consider 2 processes, Po and P1, each accessing 2 semaphores, S and Q. Let S and

Q be initialized to 1.

• Suppose that Po executes wait(S) and then P1 executes wait(Q).

 When Po executes wait(Q), it must wait until P1 executes signal(Q).

 Similarly, when P1 executes wait(S), it must wait until Po executes signal(S).

 Since these signal() operations cannot be executed, Po & P1 are deadlocked.

• Starvation (indefinite blocking) is another problem related to deadlocks.

• Starvation is a situation in which processes wait indefinitely within the semaphore.

• Indefinite blocking may occur if we remove processes from the list associated with a semaphore in

LIFO (last-in, first-out) order.

OPERATING SYSTEMS

Develop success from failures. Discouragement and failure are two of the surest stepping stones to success.

71

Classic Problems of Synchronization

1. Bounded-Buffer Problem

2. Readers and Writers Problem

3. Dining-Philosophers Problem

The Bounded-Buffer Problem

• The bounded-buffer problem is related to the producer consumer problem.

• There is a pool of n buffers, each capable of holding one item.

• Shared-data

 where,

 mutex provides mutual-exclusion for accesses to the buffer-pool.

 empty counts the number of empty buffers.

 full counts the number of full buffers.

• The symmetry between the producer and the consumer.
  The producer produces full buffers for the consumer.

  The consumer produces empty buffers for the producer.

 • Producer Process: Consumer Process:

OPERATING SYSTEMS

The successful warrior is the average man, with laser-like focus.

72

The Readers-Writers Problem

• A data set is shared among a number of concurrent processes.

• Readers are processes which want to only read the database (DB).

 Writers are processes which want to update (i.e. to read & write) the DB.

• Problem:
  Obviously, if 2 readers can access the shared-DB simultaneously without any problems.

  However, if a writer & other process (either a reader or a writer) access the shared-DB

 simultaneously, problems may arise.

 Solution:

  The writers must have exclusive access to the shared-DB while writing to the DB.

• Shared-data

 where,

 mutex is used to ensure mutual-exclusion when the variable readcount is updated.

  wrt is common to both reader and writer processes.

 wrt is used as a mutual-exclusion semaphore for the writers.

 wrt is also used by the first/last reader that enters/exits the critical-section.
  readcount counts no. of processes currently reading the object.

 Initialization
 mutex = 1, wrt = 1, readcount = 0

 Writer Process: Reader Process:

• The readers-writers problem and its solutions are used to provide reader-writer locks on some

systems.

• The mode of lock needs to be specified:

1. read mode
  When a process wishes to read shared-data, it requests the lock in read mode.

2. write mode
  When a process wishes to modify shared-data, it requests the lock in write mode.

• Multiple processes are permitted to concurrently acquire a lock in read mode,

 but only one process may acquire the lock for writing.

• These locks are most useful in the following situations:

 1. In applications where it is easy to identify
 → which processes only read shared-data and

 → which threads only write shared-data.

 2. In applications that have more readers than writers.

OPERATING SYSTEMS

The number one reason people fail in life is because they listen to their friends, family, and neighbors.

73

The Dining-Philosophers Problem

• Problem statement:

 There are 5 philosophers with 5 chopsticks (semaphores).

 A philosopher is either eating (with two chopsticks) or thinking.

 The philosophers share a circular table (Figure 3.10).

 The table has

 → a bowl of rice in the center and

 → 5 single chopsticks.

 From time to time, a philosopher gets hungry and tries to pick up the 2 chopsticks that are

closest to her.

 A philosopher may pick up only one chopstick at a time.

 Obviously, she cannot pick up a chopstick that is already in the hand of a neighbor.

 When hungry philosopher has both her chopsticks at the same time, she eats without

releasing her chopsticks.
 When she is finished eating, she puts down both of her chopsticks and starts thinking again.

• Problem objective:

 To allocate several resources among several processes in a deadlock-free & starvation-free manner.

• Solution:
 Represent each chopstick with a semaphore (Figure 3.11).

 A philosopher tries to grab a chopstick by executing a wait() on the semaphore.

 The philosopher releases her chopsticks by executing the signal() on the semaphores.

 This solution guarantees that no two neighbors are eating simultaneously.

 Shared-data
 semaphore chopstick[5];

 Initialization
 chopstick[5]={1,1,1,1,1}.

 Figure 3.10 Situation of dining philosophers Figure 3.11 The structure of philosopher

• Disadvantage:

 1. Deadlock may occur if all 5 philosophers become hungry simultaneously and grab their left

 chopstick. When each philosopher tries to grab her right chopstick, she will be delayed forever.

• Three possible remedies to the deadlock problem:

1. Allow at most 4 philosophers to be sitting simultaneously at the table.

2. Allow a philosopher to pick up her chopsticks only if both chopsticks are available.

3. Use an asymmetric solution; i.e. an odd philosopher picks up first her left chopstick and then

her right chopstick, whereas an even philosopher picks up her right chopstick and then her left

chopstick.

OPERATING SYSTEMS

You've got to get up every morning with determination if you're going to go to bed with satisfaction.

74

Monitors

• Monitor is a high-level synchronization construct.

• It provides a convenient and effective mechanism for process synchronization.

Need for Monitors

• When programmers use semaphores incorrectly, following types of errors may occur:

1. Suppose that a process interchanges the order in which the wait() and signal() operations on

the semaphore “mutex” are executed, resulting in the following execution:

 In this situation, several processes may be executing in their critical-sections simultaneously,

violating the mutual-exclusion requirement.

2. Suppose that a process replaces signal(mutex) with wait(mutex). That is, it executes

 In this case, a deadlock will occur.

3. Suppose that a process omits the wait(mutex), or the signal(mutex), or both.
 In this case, either mutual-exclusion is violated or a deadlock will occur.

OPERATING SYSTEMS

Be miserable. Or motivate yourself. Whatever has to be done, it's always your choice.

75

Monitors Usage

• A monitor type presents a set of programmer-defined operations that are provided to ensure

mutual-exclusion within the monitor.

• It also contains (Figure 3.12):
 → declaration of variables

 → bodies of procedures(or functions).

• A procedure defined within a monitor can access only those variables declared locally within the

monitor and its formal-parameters.

 Similarly, the local-variables of a monitor can be accessed by only the local-procedures.

Figure 3.12 Syntax of a monitor

• Only one process at a time is active within the monitor (Figure 3.13).

• To allow a process to wait within the monitor, a condition variable must be declared, as

• Condition variable can only be used with the following 2 operations (Figure 3.14):

1. x.signal()
 This operation resumes exactly one suspended process. If no process is suspended, then the

signal operation has no effect.

2. x.wait()
 The process invoking this operation is suspended until another process invokes x.signal().

 Figure 3.13 Schematic view of a monitor Figure 3.14 Monitor with condition variables

OPERATING SYSTEMS

Always be a first-rate version of yourself, instead of a second-rate version of somebody else.

76

• Suppose when the x.signal() operation is invoked by a process P, there exists a suspended process Q

associated with condition x.

• Both processes can conceptually continue with their execution. Two possibilities exist:

1. Signal and wait
 P either waits until Q leaves the monitor or waits for another condition.

2. Signal and continue

 Q either waits until P leaves the monitor or waits for another condition.

Dining-Philosophers Solution Using Monitors

• The restriction is
  A philosopher may pick up her chopsticks only if both of them are available.

• Description of the solution:

1. The distribution of the chopsticks is controlled by the monitor dp (Figure 3.15).

2. Each philosopher, before starting to eat, must invoke the operation pickup(). This act may

result in the suspension of the philosopher process.

3. After the successful completion of the operation, the philosopher may eat.

4. Following this, the philosopher invokes the putdown() operation.

5. Thus, philosopher i must invoke the operations pickup() and putdown() in the following

sequence:

Figure 3.15 A monitor solution to the dining-philosopher problem

OPERATING SYSTEMS

Always remember: You're braver than you believe, stronger than you seem, and smarter than you think.

77

Implementing a Monitor using Semaphores

• A process

 → must execute wait(mutex) before entering the monitor and

 → must execute signal(mutex) after leaving the monitor.

• Variables used:
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

 where
  mutex is provided for each monitor.

  next is used a signaling process to wait until the resumed process either leaves or waits

  next-count is used to count the number of processes suspended

• Each external procedure F is replaced by

• Mutual-exclusion within a monitor is ensured.

• How condition variables are implemented ?

 For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

• Definition of x.wait() Definition of x.signal()

OPERATING SYSTEMS

Courage is very important. Like a muscle, it is strengthened by use.

78

Resuming Processes within a Monitor

• Problem:

 If several processes are suspended, then how to determine which of the suspended processes

 should be resumed next?

 Solution-1: Use an FCFS ordering i.e. the process that has been waiting the longest is resumed first.

 Solution-2: Use conditional–wait construct i.e. x.wait(c)

 c is a integer expression evaluated when the wait operation is executed (Figure 3.16).

 Value of c (a priority number) is then stored with the name of the process that is

suspended.

 When x.signal is executed, process with smallest associated priority number is

resumed next.

Figure 3.16 A monitor to allocate a single resource

• ResourceAllocator monitor controls the allocation of a single resource among competing processes.

• Each process, when requesting an allocation of the resource, specifies the maximum time it plans to

use the resource.

• The monitor allocates the resource to the process that has the shortest time-allocation request.

• A process that needs to access the resource in question must observe the following sequence:

 where R is an instance of type ResourceAllocator.

• Following problems can occur:

 A process might access a resource without first gaining access permission to the resource.

 A process might never release a resource once it has been granted access to the resource.

 A process might attempt to release a resource that it never requested.

 A process might request the same resource twice.

OPERATING SYSTEMS

Don't cry because it's over. Smile because it happened.

79

UNIT 5: MEMORY MANAGEMENT

Basic Hardware

• Program must be

 → brought (from disk) into memory and

 → placed within a process for it to be run.

• Main-memory and registers are only storage CPU can access directly.

• Register access in one CPU clock.

• Main-memory can take many cycles.

• Cache sits between main-memory and CPU registers.

• Protection of memory required to ensure correct operation.

• A pair of base- and limit-registers define the logical (virtual) address space (Figure 5.1 & 5.2).

Figure 5.1 A base and a limit-register define a logical-address space

Figure 5.2 Hardware address protection with base and limit-registers

OPERATING SYSTEMS

I hope when you count the stars you begin with yourself, and may you embrace the moonlight with your dreams.

80

Address Binding

• Address binding of instructions to memory-addresses can happen at 3 different stages (Figure 5.3):

1. Compile Time
 If memory-location known a priori, absolute code can be generated.

 Must recompile code if starting location changes.

2. Load Time
 Must generate relocatable code if memory-location is not known at compile time.

3. Execution Time
 Binding delayed until run-time if the process can be moved during its execution from one

memory-segment to another.
 Need hardware support for address maps (e.g. base and limit-registers).

Figure 5.3 Multistep processing of a user-program

OPERATING SYSTEMS

Ninety-nine percent of people believe they can't do great things, so they aim for mediocrity.

81

Logical versus Physical Address Space

• Logical-address is generated by the CPU (also referred to as virtual-address).

 Physical-address is the address seen by the memory-unit.

• Logical & physical-addresses are the same in compile-time & load-time address-binding methods.

 Logical and physical-addresses differ in execution-time address-binding method.

• MMU (Memory-Management Unit)

 Hardware device that maps virtual-address to physical-address (Figure 5.4).

 The value in the relocation-register is added to every address generated by a user-process at

the time it is sent to memory.

 The user-program deals with logical-addresses; it never sees the real physical-addresses.

Figure 5.4 Dynamic relocation using a relocation-register

Dynamic Loading

• This can be used to obtain better memory-space utilization.

• A routine is not loaded until it is called.

• This works as follows:

1. Initially, all routines are kept on disk in a relocatable-load format.

2. Firstly, the main-program is loaded into memory and is executed.

3. When a main-program calls the routine, the main-program first checks to see whether the

routine has been loaded.

4. If routine has been not yet loaded, the loader is called to load desired routine into memory.

5. Finally, control is passed to the newly loaded-routine.

• Advantages:

1. An unused routine is never loaded.

2. Useful when large amounts of code are needed to handle infrequently occurring cases.

3. Although the total program-size may be large, the portion that is used (and hence loaded)

may be much smaller.

4. Does not require special support from the OS.

Dynamic Linking and Shared Libraries

• Linking postponed until execution-time.

• This feature is usually used with system libraries, such as language subroutine libraries.

• A stub is included in the image for each library-routine reference.

• The stub is a small piece of code used to locate the appropriate memory-resident library-routine.

• When the stub is executed, it checks to see whether the needed routine is already in memory. If not,

the program loads the routine into memory.

• Stub replaces itself with the address of the routine, and executes the routine.

• Thus, the next time that particular code-segment is reached, the library-routine is executed directly,

incurring no cost for dynamic-linking.

• All processes that use a language library execute only one copy of the library code.

Shared libraries

• A library may be replaced by a new version, and all programs that reference the library will

automatically use the new one.

• Version info. is included in both program & library so that programs won't accidentally execute

incompatible versions.

OPERATING SYSTEMS

Talent is never enough. With few exceptions the best players are the hardest workers.

82

Swapping

• A process must be in memory to be executed.

• A process can be
 → swapped temporarily out-of-memory to a backing-store and

 → then brought into memory for continued execution.

• Backing-store is a fast disk which is large enough to accommodate copies of all memory-images for

all users.

• Roll out/Roll in is a swapping variant used for priority-based scheduling algorithms.

  Lower-priority process is swapped out so that higher-priority process can be loaded and executed.

  Once the higher-priority process finishes, the lower-priority process can be swapped back in and

 continued (Figure 5.5).

Figure 5.5 Swapping of two processes using a disk as a backing-store

• Swapping depends upon address-binding:

1. If binding is done at load-time, then process cannot be easily moved to a different location.

2. If binding is done at execution-time, then a process can be swapped into a different memory-

space, because the physical-addresses are computed during execution-time.

• Major part of swap-time is transfer-time; i.e. total transfer-time is directly proportional to the

amount of memory swapped.

• Disadvantages:

1. Context-switch time is fairly high.

2. If we want to swap a process, we must be sure that it is completely idle.

 Two solutions:

 i) Never swap a process with pending I/O.

 ii) Execute I/O operations only into OS buffers.

OPERATING SYSTEMS

Nothing is overly hard if you divide it into small jobs.

83

Contiguous Memory Allocation

• Memory is usually divided into 2 partitions:

→ One for the resident OS.

→ One for the user-processes.

• Each process is contained in a single contiguous section of memory.

Memory Mapping & Protection

• Memory-protection means

 → protecting OS from user-process and

 → protecting user-processes from one another.

• Memory-protection is done using

 → Relocation-register: contains the value of the smallest physical-address.

 → Limit-register: contains the range of logical-addresses.

• Each logical-address must be less than the limit-register.

• The MMU maps the logical-address dynamically by adding the value in the relocation-register. This

mapped-address is sent to memory (Figure 5.6).

• When the CPU scheduler selects a process for execution, the dispatcher loads the relocation and

limit-registers with the correct values.

• Because every address generated by the CPU is checked against these registers, we can protect the

OS from the running-process.

• The relocation-register scheme provides an effective way to allow the OS size to change dynamically.

• Transient OS code: Code that comes & goes as needed to save memory-space and overhead for

unnecessary swapping.

Figure 5.6 Hardware support for relocation and limit-registers

OPERATING SYSTEMS

The difference between try and triumph is a little umph.

84

Memory Allocation

• Two types of memory partitioning are:

 1) Fixed-sized partitioning and 2) Variable-sized partitioning

Fixed-sized Partitioning
 The memory is divided into fixed-sized partitions.

 Each partition may contain exactly one process.

 The degree of multiprogramming is bound by the number of partitions.

 When a partition is free, a process is

 → selected from the input queue and

 → loaded into the free partition.

 When the process terminates, the partition becomes available for another process.

Variable-sized Partitioning
 The OS keeps a table indicating

 → which parts of memory are available and

 → which parts are occupied.

 A hole is a block of available memory.

 Normally, memory contains a set of holes of various sizes.

 Initially, all memory is

 → available for user-processes and

 → considered one large hole.

 When a process arrives, the process is allocated memory from a large hole.

 If we find the hole, we

 → allocate only as much memory as is needed and

 → keep the remaining memory available to satisfy future requests.

• Three strategies used to select a free hole from the set of available holes.

1. First Fit
 Allocate the first hole that is big enough.

 Searching can start either

 → at the beginning of the set of holes or

 → at the location where the previous first-fit search ended.

2. Best Fit
 Allocate the smallest hole that is big enough.

 We must search the entire list, unless the list is ordered by size.

 This strategy produces the smallest leftover hole.

3. Worst Fit

 Allocate the largest hole.

 Again, we must search the entire list, unless it is sorted by size.

 This strategy produces the largest leftover hole.

• First-fit and best fit are better than worst fit in terms of decreasing time and storage utilization.

OPERATING SYSTEMS

There is no elevator to success. You have to take the stairs.

85

Fragmentation

• Two types of memory fragmentation:

 1) Internal fragmentation and 2) External fragmentation

Internal Fragmentation

• The general approach is to
 → break the physical-memory into fixed-sized blocks and

 → allocate memory in units based on block size.

• The allocated-memory to a process may be slightly larger than the requested-memory.

• The difference between requested-memory and allocated-memory is called internal fragmentation i.e.

Unused memory that is internal to a partition.

External Fragmentation

• External fragmentation occurs when there is enough total memory-space to satisfy a request but the

available-spaces are not contiguous. (i.e. storage is fragmented into a large number of small holes).

• Both the first-fit and best-fit strategies for memory-allocation suffer from external fragmentation.

• Statistical analysis of first-fit reveals that
 → given N allocated blocks, another 0.5 N blocks will be lost to fragmentation.

 This property is known as the 50-percent rule.

• Two solutions to external fragmentation:

 1. Compaction

 The goal is to shuffle the memory-contents to place all free memory together in one large

hole.
 Compaction is possible only if relocation is

 → dynamic and

 → done at execution-time.

 2. Permit the logical-address space of the processes to be non-contiguous.
 This allows a process to be allocated physical-memory wherever such memory is available.

 Two techniques achieve this solution:

 1) Paging and

 2) Segmentation.

OPERATING SYSTEMS

The way to get started is to quit talking and begin doing.

86

Paging

• Paging is a memory-management scheme.

• This permits the physical-address space of a process to be non-contiguous.

• This also solves the considerable problem of fitting memory-chunks of varying sizes onto the

backing-store.

• Traditionally: Support for paging has been handled by hardware.

 Recent designs: The hardware & OS are closely integrated.

Basic Method of Paging

• Physical-memory is broken into fixed-sized blocks called frames(Figure 5.7).

 Logical-memory is broken into same-sized blocks called pages.

• When a process is to be executed, its pages are loaded into any available memory-frames from the

backing-store.

• The backing-store is divided into fixed-sized blocks that are of the same size as the memory-frames.

Figure 5.7 Paging hardware

• The page-table contains the base-address of each page in physical-memory.

• Address generated by CPU is divided into 2 parts (Figure 5.8):

 1) Page-number(p) is used as an index to the page-table and

 2) Offset(d) is combined with the base-address to define the physical-address.

 This physical-address is sent to the memory-unit.

Figure 5.8 Paging model of logical and physical-memory

OPERATING SYSTEMS

You are the only person on earth who can use your ability.

87

• The page-size (like the frame size) is defined by the hardware (Figure 5.9).

• If the size of the logical-address space is 2m, and a page-size is 2n addressing-units (bytes or words)

then the high-order m-n bits of a logical-address designate the page-number, and the n low-order bits

designate the page-offset.

Figure 5.9 Free frames (a) before allocation and (b) after allocation

OPERATING SYSTEMS

Your mind is a garden. Your thoughts are the seeds. You can grow flowers or you can grow weeds.

88

Hardware Support for Paging

• Most OS's store a page-table for each process.

• A pointer to the page-table is stored in the PCB.

Translation Lookaside Buffer

• The TLB is associative, high-speed memory.

• The TLB contains only a few of the page-table entries.

• Working:
 When a logical-address is generated by the CPU, its page-number is presented to the TLB.

 If the page-number is found (TLB hit), its frame-number is

 → immediately available and

 → used to access memory.

  If page-number is not in TLB (TLB miss), a memory-reference to page table must be made.

 The obtained frame-number can be used to access memory (Figure 5.10).

 In addition, we add the page-number and frame-number to the TLB, so that they will be

found quickly on the next reference.

• If the TLB is already full of entries, the OS must select one for replacement.

• Percentage of times that a particular page-number is found in the TLB is called hit ratio.

• Advantage: Search operation is fast.

 Disadvantage: Hardware is expensive.

• Some TLBs have wired down entries that can't be removed.

• Some TLBs store ASID (address-space identifier) in each entry of the TLB that uniquely

 → identify each process and

 → provide address space protection for that process.

Figure 5.10 Paging hardware with TLB

OPERATING SYSTEMS

Don't judge each day by the harvest you reap but by the seeds you plant.

89

Protection

• Memory-protection is achieved by protection-bits for each frame.

• The protection-bits are kept in the page-table.

• One protection-bit can define a page to be read-write or read-only.

• Every reference to memory goes through the page-table to find the correct frame-number.

• Firstly, the physical-address is computed. At the same time, the protection-bit is checked to verify

that no writes are being made to a read-only page.

• An attempt to write to a read-only page causes a hardware-trap to the OS (or memory-protection

violation).

Valid Invalid Bit

• This bit is attached to each entry in the page-table (Figure 5.11).

 Valid bit: The page is in the process’ logical-address space.

 Invalid bit: The page is not in the process’ logical-address space.

• Illegal addresses are trapped by use of valid-invalid bit.

• The OS sets this bit for each page to allow or disallow access to the page.

Figure 5.11 Valid (v) or invalid (i) bit in a page-table

OPERATING SYSTEMS

Give me a fish and I eat for a day. Teach me to fish and I eat for a lifetime.

90

Shared Pages

• Advantage of paging:

 1. Possible to share common code.

• Re-entrant code is non-self-modifying code, it never changes during execution.

• Two or more processes can execute the same code at the same time.

• Each process has its own copy of registers and data-storage to hold the data for the process's

execution.

• The data for 2 different processes will be different.

• Only one copy of the editor need be kept in physical-memory (Figure 5.12).

• Each user's page-table maps onto the same physical copy of the editor,

 but data pages are mapped onto different frames.

• Disadvantage:

 1. Systems that use inverted page-tables have difficulty implementing shared-memory.

Figure 5.12 Sharing of code in a paging environment

OPERATING SYSTEMS

One important key to success is self-confidence. An important key to self-confidence is preparation.

91

Structure of the Page Table

1. Hierarchical Paging

2. Hashed Page-tables

3. Inverted Page-tables

Hierarchical Paging

• Problem: Most computers support a large logical-address space (232 to 264). In these systems, the

page-table itself becomes excessively large.

 Solution: Divide the page-table into smaller pieces.

Two Level Paging Algorithm

• The page-table itself is also paged (Figure 5.13).

• This is also known as a forward-mapped page-table because address translation works from the

outer page-table inwards.

• For example (Figure 5.14):
 Consider the system with a 32-bit logical-address space and a page-size of 4 KB.

 A logical-address is divided into

 → 20-bit page-number and

 → 12-bit page-offset.

 Since the page-table is paged, the page-number is further divided into

 → 10-bit page-number and

 → 10-bit page-offset.

 Thus, a logical-address is as follows:

Figure 5.13 A two-level page-table scheme

Figure 5.14 Address translation for a two-level 32-bit paging architecture

OPERATING SYSTEMS

The best revenge is massive success.

92

Hashed Page Tables

• This approach is used for handling address spaces larger than 32 bits.

• The hash-value is the virtual page-number.

• Each entry in the hash-table contains a linked-list of elements that hash to the same location (to

handle collisions).

• Each element consists of 3 fields:

1. Virtual page-number

2. Value of the mapped page-frame and

3. Pointer to the next element in the linked-list.

• The algorithm works as follows (Figure 5.15):

1. The virtual page-number is hashed into the hash-table.

2. The virtual page-number is compared with the first element in the linked-list.

3. If there is a match, the corresponding page-frame (field 2) is used to form the desired

physical-address.

4. If there is no match, subsequent entries in the linked-list are searched for a matching virtual

page-number.

Clustered Page Tables

• These are similar to hashed page-tables except that each entry in the hash-table refers to several

pages rather than a single page.

• Advantages:

 1. Favorable for 64-bit address spaces.

 2. Useful for address spaces, where memory-references are noncontiguous and scattered

 throughout the address space.

Figure 5.15 Hashed page-table

OPERATING SYSTEMS

The key to success is to keep growing in all areas of life - mental, emotional, spiritual, as well as physical.

93

Inverted Page Tables

• Has one entry for each real page of memory.

• Each entry consists of
 → virtual-address of the page stored in that real memory-location and

 → information about the process that owns the page.

Figure 5.16 Inverted page-table

• Each virtual-address consists of a triplet (Figure 5.16):

 <process-id, page-number, offset>.

• Each inverted page-table entry is a pair <process-id, page-number>

• The algorithm works as follows:

1. When a memory-reference occurs, part of the virtual-address, consisting of <process-id,

page-number>, is presented to the memory subsystem.

2. The inverted page-table is then searched for a match.

3. If a match is found, at entry i-then the physical-address <i, offset> is generated.

4. If no match is found, then an illegal address access has been attempted.

• Advantage:

 1. Decreases memory needed to store each page-table

• Disadvantages:

 1. Increases amount of time needed to search table when a page reference occurs.

 2. Difficulty implementing shared-memory.

OPERATING SYSTEMS

Just remember there is someone out there that is more than happy with less than what you have.

94

Segmentation

Basic Method of Segmentation

• This is a memory-management scheme that supports user-view of memory(Figure 5.17).

• A logical-address space is a collection of segments.

• Each segment has a name and a length.

• The addresses specify both

 → segment-name and

 → offset within the segment.

• Normally, the user-program is compiled, and the compiler automatically constructs segments

reflecting the input program.

 For ex:
→ The code → Global variables

→ The heap, from which memory is allocated → The stacks used by each thread

→ The standard C library

Figure 5.17 Programmer’s view of a program

Hardware support for Segmentation

• Segment-table maps 2 dimensional user-defined addresses into one-dimensional physical-addresses.

• In the segment-table, each entry has following 2 fields:

1. Segment-base contains starting physical-address where the segment resides in memory.

2. Segment-limit specifies the length of the segment (Figure 5.18).

• A logical-address consists of 2 parts:

 1. Segment-number(s) is used as an index to the segment-table .

 2. Offset(d) must be between 0 and the segment-limit.

• If offset is not between 0 & segment-limit, then we trap to the OS(logical-addressing attempt beyond

end of segment).

• If offset is legal, then it is added to the segment-base to produce the physical-memory address.

Figure 5.18 Segmentation hardware

OPERATING SYSTEMS

All of us do not have equal talent. But , all of us have an equal opportunity to develop our talents.

95

UNIT 5(CONT.): VIRTUAL MEMORY

Virtual Memory

• In many cases, the entire program is not needed.

 For example:
 → Unusual error-conditions are almost never executed.

→ Arrays & lists are often allocated more memory than needed.

 → Certain options & features of a program may be used rarely.

• Benefits of executing a program that is only partially in memory.

  More programs could be run at the same time.

  Programmers could write for a large virtual-address space and need no longer use overlays.

  Less I/O would be needed to load/swap programs into memory, so each user program would

 run faster.

• Virtual Memory is a technique that allows the execution of processes that are not completely in

memory (Figure 5.19).
  VM involves the separation of logical-memory as perceived by users from physical-memory.

  VM allows files and memory to be shared by several processes through page-sharing.

  Logical-address space can .’. be much larger than physical-address space.

• Virtual-memory can be implemented by:

 1. Demand paging and

 2. Demand segmentation.

• The virtual (or logical) address-space of a process refers to the logical (or virtual) view of how a

process is stored in memory.

• Physical-memory may be organized in page-frames and that the physical page-frames assigned to a

process may not be contiguous.

• It is up to the MMU to map logical-pages to physical page-frames in memory.

Figure 5.19 Diagram showing virtual memory that is larger than physical-memory

OPERATING SYSTEMS

The expert in anything was once a beginner.

96

Demand Paging

• A demand-paging system is similar to a paging-system with swapping (Figure 5.20).

• Processes reside in secondary-memory (usually a disk).

• When we want to execute a process, we swap it into memory.

• Instead of swapping in a whole process, lazy swapper brings only those necessary pages into

memory.

Figure 5.20 Transfer of a paged memory to contiguous disk space

Basic Concepts of Demand Paging

• Instead of swapping in a whole process, the pager brings only those necessary pages into memory.

• Advantages:

1. Avoids reading into memory-pages that will not be used,

2. Decreases the swap-time and

3. Decreases the amount of physical-memory needed.

• The valid-invalid bit scheme can be used to distinguish between

 → pages that are in memory and

 → pages that are on the disk.

• If the bit is set to valid, the associated page is both legal and in memory.

• If the bit is set to invalid, the page either
 → is not valid (i.e. not in the logical-address space of the process) or

 → is valid but is currently on the disk (Figure 5.21).

Figure 5.21 Page-table when some pages are not in main-memory

OPERATING SYSTEMS

A creative man is motivated by the desire to achieve, not by the desire to beat others.

97

• A page-fault occurs when the process tries to access a page that was not brought into memory.

• Procedure for handling the page-fault (Figure 5.22):

1. Check an internal-table to determine whether the reference was a valid or an invalid memory

access.

2. If the reference is invalid, we terminate the process.

 If reference is valid, but we have not yet brought in that page, we now page it in.

3. Find a free-frame (by taking one from the free-frame list, for example).

4. Read the desired page into the newly allocated frame.

5. Modify the internal-table and the page-table to indicate that the page is now in memory.

6. Restart the instruction that was interrupted by the trap.

Figure 5.22 Steps in handling a page-fault

• Pure demand paging: Never bring pages into memory until required.

• Some programs may access several new pages of memory with each instruction, causing multiple

page-faults and poor performance.

• Programs tend to have locality of reference, so this results in reasonable performance from demand

paging.

• Hardware support:

1. Page-table

• Mark an entry invalid through a valid-invalid bit.

2. Secondary memory

• It holds pages that are not present in main-memory.

• It is usually a high-speed disk.

• It is known as the swap device (and the section of disk used for this purpose is known as

swap space).

OPERATING SYSTEMS

All progress takes place outside the comfort zone.

98

Performance of Demand Paging

• Demand paging can significantly affect the performance of a computer-system.

• Let p be the probability of a page-fault (0≤p ≤1).

 if p = 0, no page-faults.

 if p = 1, every reference is a fault.

• effective access time(EAT)=[(1 - p) *memory access]+ [p *page-fault time]

• A page-fault causes the following events to occur:

1. Trap to the OS.

2. Save the user-registers and process-state.

3. Determine that the interrupt was a page-fault. '

4. Check that the page-reference was legal and determine the location of the page on the disk.

5. Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user.

7. Receive an interrupt from the disk I/O subsystem (I/O completed).

8. Save the registers and process-state for the other user (if step 6 is executed).

9. Determine that the interrupt was from the disk.

10. Correct the page-table and other tables to show that the desired page is now in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user-registers, process-state, and new page-table, and then resume the

interrupted instruction.

Copy-on-Write

• This technique allows the parent and child processes initially to share the same pages.

• If either process writes to a shared-page, a copy of the shared-page is created.

• For example:

 Assume that the child process attempts to modify a page containing portions of the stack,

with the pages set to be copy-on-write.
  OS will then create a copy of this page, mapping it to the address space of the child process.

  Child process will then modify its copied page & not the page belonging to the parent process.

OPERATING SYSTEMS

Put your heart, mind, intellect and soul even to your smallest acts. This is the secret of success.

99

Page Replacement

1. FIFO page replacement

2. Optimal page replacement

3. LRU page replacement (Least Recently Used)

4. LFU page replacement (Least Frequently Used)

Need for Page Replacement

• If we increase our degree of multiprogramming, we are over-allocating memory.

• While a user-process is executing, a page-fault occurs.

• The OS determines where the desired page is residing on the disk but then finds that there are no

free frames on the free-frame list (Figure 5.23).

• The OS then could:
 → Terminate the user-process (Not a good idea).

 → Swap out a process, freeing all its frames, and reducing the level of multiprogramming.

 → Perform page replacement.

Figure 5.23 Need for page replacement

OPERATING SYSTEMS

Success usually comes to those who are too busy to be looking for it.

100

Basic Page Replacement

• Basic page replacement approach:

 → If no frame is free, we find one that is not currently being used and free it (Figure 5.24).

• Page replacement takes the following steps:

1. Find the location of the desired page on the disk.

2. Find a free frame:
  If there is a free frame, use it.

  If there is no free frame, use a page-replacement algorithm to select a victim-frame.

  Write the victim-frame to the disk; change the page and frame-tables accordingly.

3. Read the desired page into the newly freed frame; change the page and frame-tables.

4. Restart the user-process.

Figure 5.24 Page replacement

• Problem: If no frames are free, 2 page transfers (1 out & 1 in) are required. This situation
 → doubles the page-fault service-time and

 → increases the EAT accordingly.

 Solution: Use a modify-bit (or dirty bit).

• Each page or frame has a modify-bit associated with the hardware.

• The modify-bit for a page is set by the hardware whenever any word is written into the page

(indicating that the page has been modified).

• Working:

1. When we select a page for replacement, we examine it’s modify-bit.

2. If the modify-bit =1, the page has been modified. So, we must write the page to the disk.

3. If the modify-bit=0, the page has not been modified. So, we need not write the page to the

disk, it is already there.

• Advantage:

 1. Can reduce the time required to service a page-fault.

• We must solve 2 major problems to implement demand paging:

1. Develop a Frame-allocation algorithm:
 If we have multiple processes in memory, we must decide how many frames to allocate to

each process.

2. Develop a Page-replacement algorithm:
 We must select the frames that are to be replaced.

OPERATING SYSTEMS

You are successful the moment you start moving toward a worthwhile goal.

101

FIFO Page Replacement

• Each page is associated with the time when that page was brought into memory.

• When a page must be replaced, the oldest page is chosen.

• We use a FIFO queue to hold all pages in memory (Figure 5.25).

 When a page must be replaced, we replace the page at the head of the queue

 When a page is brought into memory, we insert it at the tail of the queue.

• Example: Consider the following references string with frames initially empty.

Figure 5.25 FIFO page-replacement algorithm

 The first three references(7, 0, 1) cause page-faults and are brought into these empty

frames.
 The next reference(2) replaces page 7, because page 7 was brought in first.

 Since 0 is the next reference and 0 is already in memory, we have no fault for this reference.

 The first reference to 3 results in replacement of page 0, since it is now first in line.

 This process continues till the end of string.

 There are fifteen faults altogether.

• Advantage:

 1. Easy to understand & program.

• Disadvantages:

 1. Performance is not always good (Figure 5.26).

 2. A bad replacement choice increases the page-fault rate (Belady's anomaly).

• For some algorithms, the page-fault rate may increase as the number of allocated frames increases.

This is known as Belady's anomaly.

• Example: Consider the following reference string:

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 For this example, the number of faults for four frames (ten) is greater than the number of faults

 for three frames (nine)!

Figure 5.26 Page-fault curve for FIFO replacement on a reference string

OPERATING SYSTEMS

The greater the obstacle, the more glory in overcoming it.

102

Optimal Page Replacement

• Working principle: Replace the page that will not be used for the longest period of time (Figure 5.27).

• This is used mainly to solve the problem of Belady’s Anamoly.

• This has the lowest page-fault rate of all algorithms.

• Consider the following reference string:

Figure 5.27 Optimal page-replacement algorithm

 The first three references cause faults that fill the three empty frames.

 The reference to page 2 replaces page 7, because page 7 will not be used until reference 18.

 The page 0 will be used at 5, and page 1 at 14.

 With only nine page-faults, optimal replacement is much better than a FIFO algorithm, which

results in fifteen faults.

• Advantage:

 1. Guarantees the lowest possible page-fault rate for a fixed number of frames.

• Disadvantage:

 1. Difficult to implement, because it requires future knowledge of the reference string.

OPERATING SYSTEMS

It is literally true that you can succeed best and quickest by helping others to succeed.

103

LRU Page Replacement

• The key difference between FIFO and OPT:

 → FIFO uses the time when a page was brought into memory.

 → OPT uses the time when a page is to be used.

• Working principle: Replace the page that has not been used for the longest period of time.

• Each page is associated with the time of that page's last use (Figure 5.28).

• Example: Consider the following reference string:

Figure 5.28 LRU page-replacement algorithm

  The first five faults are the same as those for optimal replacement.

  When the reference to page 4 occurs, LRU sees that of the three frames, page 2 was used

least recently. Thus, the LRU replaces page 2.
  The LRU algorithm produces twelve faults.

• Two methods of implementing LRU:

1. Counters
 Each page-table entry is associated with a time-of-use field.

 A counter(or logical clock) is added to the CPU.

 The clock is incremented for every memory-reference.

 Whenever a reference to a page is made, the contents of the clock register are copied to the

time-of-use field in the page-table entry for that page.
 We replace the page with the smallest time value.

 2. Stack

 Keep a stack of page-numbers (Figure 5.29).

 Whenever a page is referenced, the page is removed from the stack and put on the top.

 The most recently used page is always at the top of the stack.

 The least recently used page is always at the bottom.
 Stack is best implement by a doubly linked-list.

 Advantage:

 1. Does not suffer from Belady's anomaly.
  Disadvantage:

 1. Few computer systems provide sufficient h/w support for true LRU page replacement.

 Both LRU & OPT are called stack algorithms.

Figure 5.29 Use of a stack to record the most recent page references

OPERATING SYSTEMS

Determination is the wake-up call to the human will.

104

LRU-Approximation Page Replacement

• Some systems provide a reference bit for each page.

• Initially, all bits are cleared(to 0) by the OS.

• As a user-process executes, the bit associated with each page referenced is set (to 1) by the

hardware.

• By examining the reference bits, we can determine

 → which pages have been used and

 → which have not been used.

• This information is the basis for many page-replacement algorithms that approximate LRU

replacement.

Additional-Reference-Bits Algorithm

• We can gain additional ordering information by recording the reference bits at regular intervals.

• A 8-bit byte is used for each page in a table in memory.

• At regular intervals, a timer-interrupt transfers control to the OS.

• The OS shifts the reference bit for each page into the high-order bit of its 8-bit byte.

• These 8-bit shift registers contain the history of page use, for the last eight time periods.

• Examples:

 00000000 - This page has not been used in the last 8 time units (800 ms).

 11111111 - Page has been used every time unit in the past 8 time units.

 11000100 has been used more recently than 01110111.

• The page with the lowest number is the LRU page, and it can be replaced.

• If numbers are equal, FCFS is used

Second-Chance Algorithm

• The number of bits of history included in the shift register can be varied to make the updating as fast

as possible.

• In the extreme case, the number can be reduced to zero, leaving only the reference bit itself. This

algorithm is called the second-chance algorithm.

• Basic algorithm is a FIFO replacement algorithm.

• Procedure:
  When a page has been selected, we inspect its reference bit.

  If reference bit=0, we proceed to replace this page.

  If reference bit=1, we give the page a second chance & move on to select next FIFO page.

  When a page gets a second chance, its reference bit is cleared, and its arrival time is reset.

Figure 5.30 Second-chance (clock) page-replacement algorithm

OPERATING SYSTEMS

You must either modify your dreams or magnify your skills.

105

• A circular queue can be used to implement the second-chance algorithm (Figure 5.30).
 A pointer (that is, a hand on the clock) indicates which page is to be replaced next.

 When a frame is needed, the pointer advances until it finds a page with a 0 reference bit.

 As it advances, it clears the reference bits.

 Once a victim page is found, the page is replaced, and the new page is inserted in the circular

queue in that position.

Enhanced Second-Chance Algorithm

• We can enhance the second-chance algorithm by considering

 1) Reference bit and 2) modify-bit.

• We have following 4 possible classes:

1. (0, 0) neither recently used nor modified -best page to replace.

2. (0, 1) not recently used hut modified-not quite as good, because the page will need to be

written out before replacement.

3. (1, 0) recently used but clean-probably will be used again soon.

4. (1, 1) recently used and modified -probably will be used again soon, and the page will be

need to be written out to disk before it can be replaced.

• Each page is in one of these four classes.

• When page replacement is called for, we examine the class to which that page belongs.

• We replace the first page encountered in the lowest nonempty class.

Counting-Based Page Replacement

1. LFU page-replacement algorithm

 Working principle: The page with the smallest count will be replaced.

 The reason for this selection is that an actively used page should have a large reference

count.

 Problem:

 When a page is used heavily during initial phase of a process but then is never used again.

 Since it was used heavily, it has a large count and remains in memory even though it is no

 longer needed.

 Solution:

 Shift the counts right by 1 bit at regular intervals, forming an exponentially decaying

 average usage count.

2. MFU (Most Frequently Used) page-replacement algorithm
 Working principle: The page with the smallest count was probably just brought in and has

yet to be used.

OPERATING SYSTEMS

If you focus on results, you will never change. If you focus on change, you will get results.

106

Allocation of Frames

Minimum Number of Frames

• We must also allocate at least a minimum number of frames. One reason for this is performance.

• As the number of frames allocated to each process decreases, the page-fault rate increases, slowing

process execution.

• In addition, when a page-fault occurs before an executing instruction is complete, the instruction

must be restarted.

• The minimum number of frames is defined by the computer architecture.

Allocation Algorithms

1. Equal Allocation
  We split m frames among n processes is to give everyone an equal share, m/n frames.

 (For ex: if there are 93 frames and five processes, each process will get 18 frames. The three

 leftover frames can be used as a free-frame buffer pool).

2. Proportional Allocation
  We can allocate available memory to each process according to its size.

• In both 1 & 2, the allocation may vary according to the multiprogramming level.

• If the multiprogramming level is increased, each process will lose some frames to provide the

memory needed for the new process.

• Conversely, if the multiprogramming level decreases, the frames that were allocated to the departed

process can be spread over the remaining processes.

Global versus Local Allocation

Global Replacement Local Replacement

Allows a process to a replacement frame

from the set of all frames.

Each process selects from only its own set of

allocated frames.

A process may happen to select only frames

allocated to other processes, thus increasing

the number of frames allocated to it.

Number of frames allocated to a process

does not change.

Disadvantage:

A process cannot control its own page-fault

rate.

Disadvantage:

Might prevent a process by not making

available to it other less used pages of

memory.

Advantage:

Results in greater system throughput.

OPERATING SYSTEMS

Continuous effort — not strength or intelligence — is the key to unlocking our potential.

107

Thrashing

• If a process does not have "enough" pages, the page-fault rate is very high. This leads to:

 → low CPU utilization

 → operating system thinks that it needs to increase the degree of multiprogramming

 → another process added to the system.

• If the number of frames allocated to a low-priority process falls below the minimum number required,

it must be suspended.

• A process is thrashing if it is spending more time paging than executing.

Cause of Thrashing

• Thrashing results in severe performance-problems (Figure 5.31).

• The thrashing phenomenon:

 As processes keep faulting, they queue up for the paging device, so CPU utilization decreases

 The CPU scheduler sees the decreasing CPU utilization and increases the degree of

multiprogramming as a result.

 The new process causes even more page-faults and a longer queue!

Figure 5.31 Thrashing

• Methods to avoid thrashing:

1. Use Local Replacement
 If one process starts thrashing, it cannot

 → steal frames from another process and

 → cause the latter to thrash as well.

2. We must provide a process with as many frames as it needs. This approach defines the

locality model of process execution.
 Locality Model states that

 As a process executes, it moves from locality to locality.
 A locality is a set of pages that are actively used together.

 A program may consist of several different localities, which may overlap.

OPERATING SYSTEMS

The more difficult the victory, the greater the happiness in winning.

108

UNIT 6: FILE SYSTEMS

File Concepts

• A file is a named collection of related info. on secondary-storage.

• Commonly, file represents
 → program and

 → data.

• Data in file may be
 → numeric

 → alphabetic or

 → binary.

• Four types of file:

1. Text file: sequence of characters organized into lines.

2. Source file: sequence of subroutines & functions.

3. Object file: sequence of bytes organized into blocks.

4. Executable file: series of code sections.

File Attributes

1. Name

• The only information kept in human-readable form.

2. Identifier

• It is a unique number which identifies the file within file-system.

• It is in non-human-readable form.

3. Type

• It is used to identify different types of files.

4. Location

• It is a pointer to
 → device and

 → location of file.

5. Size

• Current-size of file in terms of bytes, words, or blocks.

• It also includes maximum allowed size.

6. Protection

• Access-control info. determines who can do
 → reading

 → writing and

 → executing.

7. Time, date, & user identification

• These info. can be kept for
 → creation

 → last modification and

 → last use.

• These data can be useful for

 → protection

 → security and

 → usage monitoring.

• Information about files are kept in the directory-structure, which is maintained on the disk.

OPERATING SYSTEMS

When you win, say nothing, when you lose, say less.

109

File Operations

1. Creating a file

 Two steps are:

i) Find the space in the file-system for the file.

ii) An entry for the new file is made in the directory.

2. Writing a file

 Make a system-call specifying both

 → file-name and

 → info. to be written to the file.

 The system searches the directory to find the file's location. (The system keeps a write-

pointer(wp) to the location in the file where the next write is to take place).

 The write-pointer must be updated whenever a write-operation occurs.

3. Reading a file
 Make a system-call specifying both

 → file-name and

 → location of the next block of the file in the memory.

 The system searches the directory to find the file's location. (The system keeps a read-

pointer(rp) to the location in the file where the next read is to take place).
 The read-pointer must be updated whenever a read-operation occurs.

 Same pointer (rp & wp) is used for both read- & write-operations. This results in

 → saving space and

 → reducing system-complexity.

4. Repositioning within a file
 Two steps are:

 i) Search the directory for the appropriate entry.

ii) Set the current-file-position to a given value.
 This file-operation is also known as file seek.

5. Deleting a file

 Two steps are:

 i) Search the directory for the named-file.

 ii) Release all file-space and erase the directory-entry.

6. Truncating a file

 The contents of a file are erased but its attributes remain unchanged.

 Only file-length attribute is set to zero.

(Most of the above file-operations involve searching the directory for the entry associated with the file.

To avoid this constant searching, many systems require that an ‘open’ system-call be used before that

file is first used).

• The OS keeps a small table which contains info. about all open files (called open-file table).

• If a file-operation is requested, then
 → file is specified via an index into open-file table

 → so no searching is required.

• If the file is no longer actively used, then
 → process closes the file and

 → OS removes its entry in the open-file table.

• Two levels of internal tables:

1. Per-process Table
 Tracks all files that a process had opened.

 Includes access-rights to

 → file and

 → accounting info.

 Each entry in the table in turn points to a system-wide table

2. System-wide Table

 Contains process-independent info. such as

 → file-location on the disk

 → file-size and

 → access-dates.

OPERATING SYSTEMS

If you train hard, you’ll not only be hard, you’ll be hard to beat.

110

• Information associated with an open file:

1. File-pointer

 Used by the system to keep track of last read-write location.

2. File-open Count
 The counter

 → tracks the no. of opens & closes and

 → reaches zero on the last close.

3. Disk Location of the File

 Location-info is kept in memory to avoid having to read it from disk for each operation.

4. Access Rights
 Each process opens a file in an access-mode (read, write or execute).

• File locks allow one process to
 → lock a file and

 → prevent other processes from gaining access to locked-file.

Shared Lock Exclusive Lock

Similar to a reader lock. Behaves like a writer lock.

Several processes can acquire the lock

concurrently.

Only one process at a time can acquire the

lock.

Mandatory Advisory

OS will prevent any other process from

accessing the locked-file.

OS will not prevent other process from

accessing the locked-file.

OS ensures locking integrity. It is up to software-developers to ensure that

locks are appropriately acquired and released.

Used by windows OS. Used by UNIX systems.

File Types

• Common technique for implementing file-types: Include the type as part of the file-name.

• Two parts of file-name (Figure 6.1):

 1. Name and 2. Extension

• The system uses the extension to indicate
 → type of file and

 → type of operations (read or write).

• Example:
 → Only a file with a .com, .exe, or .bat extension can be executed.

 → .com and .exe are two forms of binary executable files.

 → .bat file is a batch file containing, in ASCII format, commands to the OS.

Figure 6.1 Common file types

OPERATING SYSTEMS

What to do with a mistake: recognize it, admit it, learn from it, and forget it.

111

File Structure

• File types can be used to indicate the internal structure of the file.

• Disadvantage of supporting multiple file structures: Large size.

• All OSs must support at least one structure: an executable file

• In Mac OS, file contains 2 parts:

 1. Resource fork: contains info. of interest to the user.

 2. Data fork: contains program-code or data.

• Too few structures make programming inconvenient.

• Too many structures make programmer confusion.

Internal File Structure

• Locating an offset within a file can be complicated for the OS.

• Disk-systems typically have a well-defined block-size.

• All disk I/0 is performed in units of one block (physical record), and all blocks are the same size.

• Problem: It is unlikely that physical-record size will exactly match length of desired logical-record.

 Solution: Packing a number of logical-records into physical-blocks.

• Following things determine how many logical-records are in each physical-block:

 → logical-record size

 → physical-block size and

 → packing technique.

• The packing can be done either by
 → user's application program or

 → OS.

• Disadvantage of packing:
 → All file-systems suffer from internal fragmentation (the larger the block size, the greater the

 internal fragmentation).

OPERATING SYSTEMS

Adversity cause some men to break; others to break records.

112

Access Methods

Sequential Access

• This is based on a tape model of a file.

• This works both on
 → sequential-access devices and

 → random-access devices.

• Info. in the file is processed in order (Figure 6.2).

 For ex: editors and compilers

• Reading and writing are the 2 main operations on the file.

• File-operations:

1. read next
 This is used to

 → read the next portion of the file and

 → advance a file-pointer, which tracks the I/O location.

2. write next
  This is used to

 → append to the end of the file and

 → advance to the new end of file.

Figure 6.2 Sequential-access file

Direct Access (Relative Access)

• This is based on a disk model of a file (since disks allow random access to any file-block).

• A file is made up of fixed length logical records.

• Programs can read and write records rapidly in no particular order.

• Disadvantages:

1. Useful for immediate access to large amounts of info.

 2. Databases are often of this type.

• File-operations include a relative block-number as parameter.

• The relative block-number is an index relative to the beginning of the file.

• File-operations (Figure 6.3):

1. read n

2. write n

 where n is the block-number

• Use of relative block-numbers:
 → allows OS to decide where the file should be placed and

 → helps to prevent user from accessing portions of file-system that may not be part of his file.

Figure 6.3 Simulation of sequential access on a direct-access file

OPERATING SYSTEMS

I hated every minute of training, but I said, ‘Don’t quit. Suffer now and live the rest of your life as a champion.

113

Other Access Methods

• These methods generally involve constructing a file-index.

• The index contains pointers to the various blocks (like an index in the back of a book).

• To find a record in the file(Figure 6.4):

 1. First, search the index and

 2. Then, use the pointer to

 → access the file directly and

 → find the desired record.

• Problem: With large files, the index-file itself may become too large to be kept in memory.

Solution: Create an index for the index-file. (The primary index-file may contain pointers to secondary

index-files, which would point to the actual data-items).

Figure 6.4 Example of index and relative files

OPERATING SYSTEMS

Never give up! Failure and rejection are only the first step to succeeding.

114

Directory Structure

1. Single level directory

2. Two level directory

3. Tree structured directories

4. Acyclic-graph directories

5. General graph directory

Storage Structure

• A storage-device can be used in its entirety for a file-system.

• The storage-device can be split into 1 or more partitions (known as slices or minidisk).

• Any entity containing a file-system is known as a volume.

• The volume may be
 → a subset of a device or

 → a whole device.

• Each volume must also contain info. about the files in the system. This info. is kept in entries in a

device directory(or volume table of contents).

• Device directory (or directory) records following info. for all files on that volume (Figure 6.5):
→ name

→ location

→ size and

→ type.

Figure 6.5: A typical file-system organization

Directory Overview

• Operations performed on a directory:

1.Search for a File
 We need to be able to search a directory-structure to find the entry for a particular file.

2. Create a File
 We need to be able to create and add new files to the directory.

3. Delete a File
 When a file is no longer needed, we want to be able to remove it from the directory.

4. List a Directory

 We need to be able to

 → list the files in a directory and

 → list the contents of the directory-entry for each file.

5. Rename a File
 Because the name of a file represents its contents to its users, we must be able to change the

name when the contents or use of the file changes.

6. Traverse the File-system
 We may wish to access

 → every directory and

 → every file within a directory-structure.

 For reliability, it is a good idea to save the contents and structure of the entire file-system at

regular intervals.

OPERATING SYSTEMS

Earn your success based on service to others, not at the expense of others.

115

Single Level Directory

• All files are contained in the same directory (Figure 6.6).

• Disadvantages (Limitations):

 1. Naming problem: All files must have unique names.

 2. Grouping problem: Difficult to remember names of all files, as number of files increases.

Figure 6.6 Single-level directory

Two Level Directory

• A separate directory for each user.

• Each user has his own UFD (user file directory).

• The UFDs have similar structures.

• Each UFD lists only the files of a single user.

• When a user job starts, the system's MFD is searched (MFD=master file directory).

• The MFD is indexed by user-name.

• Each entry in MFD points to the UFD for that user (Figure 6.7).

Figure 6.7 Two-level directory-structure

• To create a file for a user,

 the OS searches only that user's UFD to determine whether another file of that name exists.

• To delete a file,

 the OS limits its search to the local UFD. (Thus, it cannot accidentally delete another user's file

 that has the same name).

• Advantage:

1. No filename-collision among different users.

2. Efficient searching.

• Disadvantage

 1. Users are isolated from one another and can’t cooperate on the same task.

OPERATING SYSTEMS

If you light a lamp for somebody, it will also brighten your path.

116

Tree Structured Directories

• Users can create their own subdirectories and organize files (Figure 6.8).

• A tree is the most common directory-structure.

• The tree has a root directory.

• Every file in the system has a unique path-name.

Figure 6.8 Tree-structured directory-structure

• A directory contains a set of files (or subdirectories).

• A directory is simply another file, but it is treated in a special way.

• In each directory-entry, one bit defines as

 file (0) or

 subdirectory (1).

• Path-names can be of 2 types:

• Two types of path-names:

1. Absolute path-name begins at the root.

2. Relative path-name defines a path from the current directory.

• How to delete directory?

1. To delete an empty directory:

 → Just delete the directory.

2. To delete a non-empty directory:
 → First, delete all files in the directory.

 → If any subdirectories exist, this procedure must be applied recursively to them.

• Advantage:

 1. Users can be allowed to access the files of other users.

• Disadvantages:

 1. A path to a file can be longer than a path in a two-level directory.

 2. Prohibits the sharing of files (or directories).

OPERATING SYSTEMS

To do more for the world than the world does for you, that is success.

117

Acyclic Graph Directories

• The directories can share subdirectories and files (Figure 6.9).

 (An acyclic graph means a graph with no cycles).

• The same file (or subdirectory) may be in 2 different directories.

• Only one shared-file exists, so any changes made by one person are immediately visible to the other.

Figure 6.9 Acyclic-graph directory-structure

• Two methods to implement shared-files(or subdirectories):

1. Create a new directory-entry called a link.

A link is a pointer to another file (or subdirectory).

2. Duplicate all info. about shared-files in both sharing directories.

• Two problems:

1. A file may have multiple absolute path-names.

2. Deletion may leave dangling-pointers to the non-existent file.

 Solution to deletion problem:

 1. Use backpointers: Preserve the file until all references to it are deleted.

 2. With symbolic links, remove only the link, not the file. If the file itself is deleted, the link can

 be removed.

OPERATING SYSTEMS

Worry does not empty tomorrow of its sorrow, it empties today of its strength.

118

General Graph Directory

• Problem: If there are cycles, we want to avoid searching components twice (Figure 6.10).

 Solution: Limit the no. of directories accessed in a search.

• Problem: With cycles, the reference-count may be non-zero even when it is no longer possible to

refer to a directory (or file). (A value of 0 in the reference count means that there are no more

references to the file or directory, and the file can be deleted).

Solution: Garbage-collection scheme can be used to determine when the last reference has been

deleted.

• Garbage collection involves

 1. First pass

 → traverses the entire file-system and

 → marks everything that can be accessed.

 2. A second pass collects everything that is not marked onto a list of free-space.

Figure 6.10 General graph directory

OPERATING SYSTEMS

Everything you want is on the other side of fear.

119

File System Mounting

• A file-system must be mounted before it can be available to processes on the system (Figure 6.11).

• Mount-point is the location in the file-structure where the file-system is to be attached.

• Procedure:

 1. OS is given
 → name of the device and

 → mount-point (Figure 6.12).

 2. OS verifies that the device contains a valid file-system.

 3. OS notes in its directory-structure that a file-system is mounted at specified mount-point.

Figure 6.11 File system. (a) Existing system. (b) Unmounted volume

Figure 6.12 Mount point

OPERATING SYSTEMS

It doesn’t matter who you are, where you come from. The ability to triumph begins with you. Always.

120

File Sharing

• Sharing of files on multi-user systems is desirable.

• Sharing may be done through a protection scheme.

• On distributed systems, files may be shared across a network.

• Network File-system (NFS) is a common distributed file-sharing method.

Multiple Users

• File-sharing can be done in 2 ways:

 1. The system can allow a user to access the files of other users by default or

 2. The system may require that a user specifically grant access.

• To implement file-sharing, the system must maintain more file- & directory-attributes than on a

single-user system.

• Most systems use concepts of file owner and group.

1. Owner
 The user who

 →may change attributes & grant access and

 → has the most control over the file (or directory).

 Most systems implement owner attributes by managing a list of user-names and user IDs

2. Group

 The group attribute defines a subset of users who can share access to the file.

 Group functionality can be implemented as a system-wide list of group-names and group IDs.

• Exactly which operations can be executed by group-members and other users is definable by the

file's owner.

• The owner and group IDs of a file
 → are stored with the other file-attributes.

 → can be used to allow/deny requested operations.

Remote File Systems

• Allows a computer to mount 1 or more file-systems from 1 or more remote-machines.

• Three methods:

1. Manually via programs like FTP.

2. Automatically DFS (Distributed file-system): remote directories are visible from a local

machine.

3. Semi-automatically via www (World Wide Web): A browser is needed to gain access to

the remote files, and separate operations (a wrapper for ftp) are used to transfer files.

• ftp is used for both anonymous and authenticated access.

• Anonymous access allows a user to transfer files without having an account on the remote system.

Client Server Model

• Allows clients to mount remote file-systems from servers.

• The machine containing the files is called the server.

 The machine seeking access to the files is called the client.

• A server can serve multiple clients, and

 A client can use multiple servers.

• The server specifies which resources (files) are available to which clients.

• A client can be specified by a network-name such as an IP address.

• Disadvantage:

 1. Client identification is more difficult.

• In UNIX and its NFS (network file-system), authentication takes place via the client networking info.,

by default.

• Once the remote file-system is mounted, file-operation requests are sent to the server via the DFS

protocol.

Distributed Information Systems

• Provides unified access to the info. needed for remote computing.

• The DNS (domain name system) provides hostname-to-networkaddress translations.

• Other distributed info. systems provide username/password space for a distributed facility.

OPERATING SYSTEMS

The two most important days in your life are the day you are born and the day you find out why.

121

Failure Modes

• Local file-systems can fail for a variety of reasons such as

 → failure of disk (containing the file-system)

 → corruption of directory-structure &

 → cable failure.

 • Remote file-systems have more failure modes because of the complexity of network-systems.

• The network can be interrupted between 2 hosts. Such interruptions can result from
 → hardware failure

 → poor hardware configuration or

 → networking implementation issues.

• DFS protocols allow delaying of file-system operations to remote-hosts, with the hope that the

remote-host will become available again.

• To implement failure-recovery, some kind of state info. may be maintained on both the client and the

server.

Consistency Semantics

• These represent an important criterion of evaluating file-systems that supports file-sharing.

• These specify how multiple users of a system are to access a shared-file simultaneously.

• In particular, they specify when modifications of data by one user will be observed by other users.

• These semantics are typically implemented as code with the file-system.

• These are directly related to the process-synchronization algorithms.

• A successful implementation of complex sharing semantics can be found in the Andrew file-system

(AFS).

UNIX Semantics

• UNIX file-system (UFS) uses the following consistency semantics:

1. Writes to an open-file by a user are visible immediately to other users who have this

file opened.

2. One mode of sharing allows users to share the pointer of current location into a file.

Thus, the advancing of the pointer by one user affects all sharing users.

• A file is associated with a single physical image that is accessed as an exclusive resource.

• Contention for the single image causes delays in user processes.

Session Semantics

• The AFS uses the following consistency semantics:

1. Writes to an open file by a user are not visible immediately to other users that have

the same file open.

2. Once a file is closed, the changes made to it are visible only in sessions starting later.

Already open instances of the file do not reflect these changes.

• A file may be associated temporarily with several (possibly different) images at the same

time.

• Consequently, multiple users are allowed to perform both read and write accesses

concurrently on their images of the file, without delay.

• Almost no constraints are enforced on scheduling accesses.

Immutable Shared Files Semantics

• Once a file is declared as shared by its creator, it cannot be modified.

• An immutable file has 2 key properties:

 1. File-name may not be reused and

 2. File-contents may not be altered.

• Thus, the name of an immutable file signifies that the contents of the file are fixed.

• The implementation of these semantics in a distributed system is simple, because the sharing

is disciplined

OPERATING SYSTEMS

Winners see the gain, losers see the pain.

122

Protection

• When info. is stored in a computer system, we want to keep it safe from physical damage (reliability)

and improper access (protection).

• Reliability is generally provided by duplicate copies of files.

• For a small single-user system, we might provide protection by physically removing the floppy disks

and locking them in a desk drawer.

• File owner/creator should be able to control:
→ what can be done

→ by whom.

Types of Access

• Systems that do not permit access to the files of other users do not need protection. This is too

extreme, so controlled-access is needed.

• Following operations may be controlled:

1. Read

Read from the file.

2. Write

Write or rewrite the file.

3. Execute

Load the file into memory and execute it.

4. Append

Write new info. at the end of the file.

5. Delete

Delete the file and tree its space for possible reuse.

6. List

List the name and attributes of the file.

OPERATING SYSTEMS

Grow in such a way that one day all those people who rejected you will admire you

123

Access Control

• Common approach to protection problem: make access dependent on identity of user.

• Files can be associated with an ACL (access-control list) which specifies
 → username and

 → types of access for each user.

• Problems:

 1. Constructing a list can be tedious.

 2. Directory-entry now needs to be of variable-size, resulting in more complicated space management.

Solution: These problems can be resolved by combining ACLs with an ‘owner, group, universe’ access-

control scheme

• To reduce the length of the ACL, many systems recognize 3 classifications of users:

1. Owner

The user who created the file is the owner.

2. Group

A set of users who are sharing the file and need similar access is a group.

3. Universe

All other users in the system constitute the universe.

• Samples:

 E.g. rwx bits indicate which users have permission to read/write/execute

 A Sample UNIX directory listing:

Other Protection Approaches

• A password can be associated with each file.

• Disadvantages:

1. The no. of passwords you need to remember may become large.

2. If only one password is used for all the files, then all files are accessible if it is discovered.

3. Commonly, only one password is associated with all of the user’s files, so protection is all-or-

nothing.

• In a multilevel directory-structure, we need to provide a mechanism for directory protection.

• The directory operations that must be protected are different from the File-operations:

1. Control creation & deletion of files in a directory.

2. Control whether a user can determine the existence of a file in a directory.

OPERATING SYSTEMS

Yes to 3 A’s: Accept, Adjust, and Appreciate. No to 3 C’s Never Criticize, Condemn, or Complain.

124

UNIT 6(CONT.): IMPLEMENTING FILE SYSTEM

File System Structure

• Disks provide the bulk of secondary-storage on which a file-system is maintained.

• The disk is a suitable medium for storing multiple files. This is because

1. A disk can be rewritten in place.
 It is possible to

 → read a block from the disk

 → modify the block and

 → write the block into the disk.

2. A disk can access directly any block of information.
 It is possible to access any file either sequentially or randomly.

 Switching from one file to another requires only moving the read-write heads and waiting for

the disk to rotate.

• To improve I/O efficiency, I/O transfers between memory and disk are performed in units of blocks.
 Each block has one or more sectors.

 Depending on the disk drive, sector-size varies from 32 bytes to 4096 bytes.

 The usual size is 512 bytes.

• File-systems provide efficient and convenient access to the disk by allowing data to be stored,

located, and retrieved easily

• Design problems of file-systems:

1. Defining how the file-system should look to the user.

2. Creating algorithms & data-structures to map the logical file-system onto the physical

secondary-storage devices.

• The file-system itself is generally composed of many different levels.

  Every level in design uses features of lower levels to create new features for use by higher levels.

OPERATING SYSTEMS

Only if there is proper balancing of colors it makes a painting. Life is all about balance.

125

Layered File System

• Levels of the file-system(Figure 6.13):

1. I/O Control (Lowest level)
 Consists of device-drivers & interrupt handlers to transfer info. between main-memory & disk.

 A device-driver can be thought of as a translator.

 Its input consists of high-level commands.

 Its output consists of low-level instructions.

2. Basic File-system
 Needed only to issue basic commands to the appropriate device-driver to read & write blocks

on the disk.

3. File-organization Module
 Knows about files and their logical & physical blocks.

 Translates logical-block address to physical-block address.

4. Logical File-system
 Manages metadata information. i.e. Metadata includes all of the file-system structure except

the actual data.
 Manages the directory-structure.

 Maintains file-structure via FCB (File Control Blocks). i.e. FCB contains info. about the file,

including
 → ownership

 → permissions and

 → location of the file.

• Advantages of layered structure:

1. Duplication of code is minimized.

2. I/O control can be used by multiple file-systems.

Figure 6.13 Layered file system

OPERATING SYSTEMS

If one knows to convert challenges into opportunities, there will be no troubles in life.

126

File System Implementation

Overview

• On-disk & in-memory structures are used to implement a file-system.

• On-disk structures include (Figure 6.14):

1. Boot Control Block
 Contains info. needed to boot an OS from the partition.

 It is typically the first block of a volume.

 In UFS, it is called the boot block.

 In NTFS, it is the partition boot sector.

2. Partition Control Block
 Contains partition-details like

 → no. of blocks

 → size of blocks and

 → free-block count.

 In UFS, this is called a superblock.

 In NTFS, it is stored in the master file table.

3. Directory-structure

 Used to organize the files.

 In UFS, this includes file-names and associated inode-numbers.

 In NTFS, it is stored in the master file table.

4. FCB (file control block)
 Contains file-details including

 → file-permissions

 → ownership

 → file-size and

 → location of data-blocks.

Figure 6.14 A typical file-control block

• In-memory structures are used for both file-system management and performance improvement via

caching: The structures may include:

1. In-memory Mount Table

 Contains info. about each mounted partition.

2. An in-memory Directory-structure
 Holds directory info. of recently accessed directories.

3. System-wide Open-file Table
 Contains a copy of the FCB of each open file

4. Per-process Open-file Table

 Contains a pointer to the appropriate entry in the system-wide open-file table.

• Buffers hold file-system blocks when they are being read from disk or written to disk.

• To create a new file, a program calls the LFS (logical file-system).

 The ‘LFS’ knows the format of the directory-structures.

• To create a new file, the LFS

1. Allocates a new FCB.

2. Reads the appropriate directory into memory.

3. Updates LFS with the new file-name and FCB.

4. Writes LFS back to the disk (Figure 6.15).

OPERATING SYSTEMS

Even nature adapts itself to a person, who is dedicated to his work and where ‘Give up’ doesn’t exist.

127

• After a file has been created, it can be used for I/O.

1. First the file must be opened.

2. FCB is copied to a system-wide open-file table in memory.

3. An entry is made in the per-process open-file table, with a pointer to the entry in the

system-wide open-file table.

4. The open call returns a pointer to the appropriate entry in the per-process file-system table.

5. All file operations are then performed via this pointer.

6. When a process closes the file

i) The per-process table entry is removed.

ii) The system-wide entry’s open count is decremented.

Figure 6.15 In-memory file-system structures. (a) File open. (b) File read

Partitions & Mounting

• Disk layouts can be:

 1. A disk can be divided into multiple partitions or

 2. A partition can span multiple disks (RAID).

• Each partition can either be:

1. Raw i.e. containing no file-system or

2. Cooked i.e. containing a file-system.

• Boot info. is a sequential series of blocks, loaded as an image into memory.
  Execution of the image starts at a predefined location, such as the first byte.

• The boot info. has its own format, because

 → at boot time the system does not have device-drivers loaded and

 → . ‘. the system cannot interpret the file-system format.

• Steps for mounting:

1. The root partition containing the kernel is mounted at boot time.

2. Then, the OS verifies that the device contains a valid file-system.

3. Finally, the OS notes in its in-memory mount table structure that

 i) A file-system is mounted and

 ii) Type of the file-system.

OPERATING SYSTEMS

Success or failure is not about potential, but it is a matter of interest.

128

Virtual File Systems

• The OS allows multiple types of file-systems to be integrated into a directory-structure.

• Three layers (Figure 6.16):

1. File-system Interface
 This is based on the open(), read(), writeO and closeO calls on file descriptors.

2. File-system (VFS) Interface

 This serves 2 functions:

1. Separates file-system basic operations from their implementation by defining a clean

VFS interface.

2. The VFS is based on a file-representation structure called a vnode.

 vnode contains a numerical designator for a network-wide unique file.

3. Local File-system
 Local files are distinguished according to their file-system types.

Figure 6.16 Schematic view of a virtual file system

OPERATING SYSTEMS

Life has given us a gift of 86,400 seconds in a day. Have you used one to say ‘thank you’?

129

Directory Implementation

 1. Linear-list

 2. Hash-table

Linear List

• A linear-list of file-names has pointers to the data-blocks.

• To create a new file:

1. First search the directory to be sure that no existing file has the same name.

2. Then, add a new entry at the end of the directory.

• To delete a file:

1. Search the directory for the named-file and

2. Then release the space allocated to the file.

• To reuse the directory-entry, there are 3 solutions:

 1. Mark the entry as unused (by assigning it a special name).

 2. Attach the entry to a list of free directory entries.

 3. Copy the last entry in the directory into the freed location & to decrease length of directory.

• Problem: Finding a file requires a linear-search which is slow to execute.

 Solutions:

 1. A cache can be used to store the most recently used directory information.

 2. A sorted list allows a binary search and decreases search time.

• Advantage:

 1. Simple to program.

• Disadvantage:

 1. Time-consuming to execute.

Hash Table

• A linear-list stores the directory-entries. In addition, a hash data-structure is also used.

• The hash-table

 → takes a value computed from the file name and

 → returns a pointer to the file name in the linear-list.

• Advantages:

 1. Decrease the directory search-time.

 2. Insertion & deletion are easy.

• Disadvantages:

 1. Some provision must be made for collisions i.e. a situation in which 2 file-names hash to the

 same location.

2. Fixed size of hash-table and the dependence of the hash function on that size.

OPERATING SYSTEMS

Opportunity is missed by most people because it is dressed in overalls and looks like work.

130

Allocation Methods

• The direct-access nature of disks allows us flexibility in the implementation of files.

• In almost every case, many files are stored on the same disk.

• Main problem:

 How to allocate space to the files so that
 → disk-space is utilized effectively and

 → files can be accessed quickly.

• Three methods of allocating disk-space:

1. Contiguous

2. Linked and

3. Indexed

• Each method has advantages and disadvantages.

• Some systems support all three (Data General's RDOS for its Nova line of computers).

Contiguous Allocation

• Each file occupies a set of contiguous-blocks on the disk (Figure 6.17).

• Disk addresses define a linear ordering on the disk.

• The number of disk seeks required for accessing contiguously allocated files is minimal.

• Both sequential and direct access can be supported.

• Problems:

1. Finding space for a new file
 External fragmentation can occur.

2. Determining how much space is needed for a file.
 If you allocate too little space, it can't be extended.

Two solutions:

i) The user-program can be terminated with an appropriate error-message. The user

must then allocate more space and run the program again.

ii) Find a larger hole,

 copy the contents of the file to the new space and

 release the previous space.

• To minimize these drawbacks:

1. A contiguous chunk of space can be allocated initially and

2. Then when that amount is not large enough, another chunk of contiguous space

(known as an ‘extent’) is added.

Figure 6.17 Contiguous allocation of disk-space

OPERATING SYSTEMS

You were born to win, but to be a winner, you must plan to win, prepare to win, and expect to win.

131

Linked Allocation

• Each file is a linked-list of disk-blocks.

• The disk-blocks may be scattered anywhere on the disk.

• The directory contains a pointer to the first and last blocks of the file (Figure 6.18).

• To create a new file, just create a new entry in the directory (each directory-entry has a pointer to

the disk-block of the file).

1. A write to the file causes a free block to be found. This new block is then written to and

linked to the eof (end of file).

2. A read to the file causes moving the pointers from block to block.

• Advantages:

1. No external fragmentation, and any free block on the free-space list can be used to satisfy a

request.

2. The size of the file doesn't need to be declared on creation.

3. Not necessary to compact disk-space.

• Disadvantages:

1. Can be used effectively only for sequential-access files.

2. Space required for the pointers.

 Solution: Collect blocks into multiples (called ‘clusters’) & allocate clusters rather than blocks.

 3. Reliability: Problem occurs if a pointer is lost(or damaged).

 Partial solutions: i) Use doubly linked-lists.

 ii) Store file name and relative block-number in each block.

 Figure 6.18 Linked allocation of disk-space Figure 6.19 File-allocation table

• FAT is a variation on linked allocation (FAT=File Allocation Table).

• A section of disk at the beginning of each partition is set aside to contain the table (Figure 6.19).

• The table
 → has one entry for each disk-block and

 → is indexed by block-number.

• The directory-entry contains the block-number of the first block in the file.

• The table entry indexed by that block-number then contains the block-number of the next block in

the file.

• This chain continues until the last block, which has a special end-of-file value as the table entry.

• Advantages:

1. Cache can be used to reduce the no. of disk head seeks.

2. Improved access time, since the disk head can find the location of any block by reading the

info in the FAT.

OPERATING SYSTEMS

Motivation is like fire—unless you keep adding fuel to it, it dies. Your fuel is your belief in your inner value.

132

Indexed Allocation

• Solves the problems of linked allocation (without a FAT) by bringing all the pointers together into an

index block.

• Each file has its own index block, which is an array of disk-block addresses.

Logical view of the Index Table

• The ith entry in the index block points to the ith file block (Figure 6.20).

• The directory contains the address of the index block.

Figure 6.20 Indexed allocation of disk space

• When the file is created, all pointers in the index-block are set to nil.

• When writing the ith block, a block is obtained from the free-space manager, and its address put in

the ith index-block entry,

• Problem: If the index block is too small, it will not be able to hold enough pointers for a large file,

 Solution: Three mechanisms to deal with this problem:

1. Linked Scheme
 To allow for large files, link several index blocks,

2. Multilevel Index

 A first-level index block points to second-level ones, which in turn point to the file blocks,

3. Combined Scheme
The first few pointers point to direct blocks (i.e. they contain addresses of blocks that contain

data of the file).

 The next few pointers point to indirect blocks.

• Advantage:

 1. Supports direct access, without external fragmentation,

• Disadvantages:

1. Suffer from wasted space,

2. The pointer overhead of the index block is generally greater than the pointer overhead of

linked allocation,

3. Suffer from performance problems,

OPERATING SYSTEMS

Quiet people have the loudest minds.

133

Performance

Contiguous Allocation

1Adv. Requires only one access to get a disk-block

2Adv. We can calculate immediately the disk address of the next block and read it directly

3Adv. Good for direct access

Linked Allocation

1Adv. Good for sequential access

1Dis. Not be used for an application requiring direct access

Indexed Allocation

1Adv. If the index block is already in memory, then the access can be made directly

 1Dis. keeping the index block in memory requires considerable space

OPERATING SYSTEMS

Teamwork divides the task and double the success.

134

Free Space Management

• A free-space list keeps track of free disk-space (i.e. those not allocated to some file or directory).

• To create a file,

 1. We search the free-space list for the required amount of space.

 2. Allocate that space to the new file.

 3. This space is then removed from the free-space list.

• To delete a file, its disk-space is added to the free-space list.

Bit Vector

• The free-space list is implemented as a bit map/bit vector.

• Each block is represented by a bit.

 1. If the block is free, the bit is 1.

 2. If the block is allocated, the bit is 0.

• For example, consider a disk where blocks 2, 3, 4, 5 and 7 are free and the rest of the blocks are

allocated. The free-space bit map will be

 00111101

• Advantage:

 1. Relative simplicity & efficiency in finding the first free block, or ‘n’ consecutive free blocks.

• Disadvantages:

 1. Inefficient unless the entire vector is kept in main memory.

 2. The entire vector is written to disc occasionally for recovery.

Linked List

• The basic idea:

 1. Link together all the free disk-blocks (Figure 6.21).

 2. Keep a pointer to the first free block in a special location on the disk.

 3. Cache the block in memory.

• The first block contains a pointer to the next free one, etc.

• Disadvantage:

 1. Not efficient, because to traverse the list, each block is read.

• Usually the OS simply needs a free block, and uses the first one.

Grouping

• The addresses of n free blocks are stored in the 1st free block.

• The first n-1 of these blocks are actually free.

• The last block contains addresses of another n free blocks, etc.

• Advantage:

1. Addresses of a large no of free blocks can be found quickly.

Counting

• Takes advantage of the fact that, generally, several contiguous blocks may be allocated/freed

simultaneously.

• Keep the address of the first free block and the number ‘n’ of free contiguous blocks that follow the

first block.

• Each entry in the free-space list then consists of a disk address and a count.

Figure 6.21 Linked free-space list on disk

